The symptoms of cardiac myxoma (CM) mainly occur when the tumor is growing, and the diagnosis is determined by clinical presentation. Unfortunately, there is no evidence that specific blood tests are useful in CM diagnosis. Raman spectroscopy (RS) has emerged as a promising auxiliary diagnostic tool because of its ability to simultaneously detect multiple molecular features without labelling. The objective of this study was to identify spectral markers for CM, one of the most common benign cardiac tumors with insidious onset and rapid progression. In this study, a preliminary analysis was conducted based on serum Raman spectra to obtain the spectral differences between CM patients (CM group) and healthy control subjects (normal group). Principal component analysis-linear discriminant analysis (PCA-LDA) was constructed to highlight the differences in the distribution of biochemical components among the groups according to the obtained spectral information. Principal component analysis was combined with a support vector machine model (PCA-SVM) based on three different kernel functions (linear, polynomial, and Gaussian radial basis function (RBF)) to resolve spectral variations between all study groups. The results showed that CM patients had lower serum levels of phenylalanine and carotenoid than those in the normal group, and increased levels of fatty acids. The resulting Raman data was used in a multivariate analysis to determine the Raman range that could be used for CM diagnosis. Also, the chemical interpretation of the spectral results obtained is further presented in the discussion section based on the multivariate curve resolution-alternating least squares (MCR-ALS) method. These results suggest that RS can be used as an adjunct and promising tool for CM diagnosis, and that vibrations in the fingerprint region can be used as spectral markers for the disease under study.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay00180fDOI Listing

Publication Analysis

Top Keywords

cardiac myxoma
8
multivariate analysis
8
spectral markers
8
normal group
8
principal component
8
spectral
6
raman
5
analysis
5
non-destructive diagnostic
4
diagnostic testing
4

Similar Publications

As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).

View Article and Find Full Text PDF

Cardiac myxomas are benign tumors of the heart. They occur mostly in the left atrium. The preferred treatment is surgical resection, which can be performed via conventional median sternotomy, minimally invasive, or robotic-assisted approaches.

View Article and Find Full Text PDF

Even if rarely detected, right atrial (RA) masses represent a diagnostic challenge due to their heterogeneous presentation. Para-physiological RA structures, such as a prominent Eustachian valve, Chiari's network, and lipomatous atrial hypertrophy, may easily be misinterpreted as pathological RA masses, including thrombi, myxomas, and vegetations. Each pathological mass should always be correlated with adequate clinical, anamnestic, and laboratory data.

View Article and Find Full Text PDF

BACKGROUND Primary cardiac malignancies are extremely rare, with an incidence of 0.07% on autopsy series. Primary sarcomas represent up to 95% of malignant neoplasms, with myxofibrosarcomas accounting for only 10%.

View Article and Find Full Text PDF

A 70-year-old man presented to our hospital with chest discomfort and epigastric pain. Echocardiography revealed a giant atrial myxoma in the right atrium with severe tricuspid regurgitation. The aortic valve was calcified, and severe aortic stenosis was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!