Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Significance Aims: The neurovascular mechanisms underlying the initiation of absence seizures and their dynamics are still not well understood. The objective of this study was to better noninvasively characterize the dynamics of the neuronal and vascular network at the transition from the interictal state to the ictal state of absence seizures and back to the interictal state using a combined electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and diffuse correlation spectroscopy (DCS) approach. The second objective was to develop hypotheses about the neuronal and vascular mechanisms that propel the networks to the 3-Hz spikes and wave discharges (SWDs) observed during absence seizures.
Approaches: We evaluated the simultaneous changes in electrical (neuronal) and optical dynamics [hemodynamic, with changes in (Hb) and cerebral blood flow] of 8 pediatric patients experiencing 25 typical childhood absence seizures during the transition from the interictal state to the absence seizure by simultaneously performing EEG, fNIRS, and DCS.
Results: Starting from before the onset of the SWD, we observed a transient direct current potential shift that correlated with alterations in functional fNIRS and DCS measurements of the cerebral hemodynamics detecting the preictal changes.
Discussion: Our noninvasive multimodal approach highlights the dynamic interactions between the neuronal and vascular compartments that take place in the neuronal network near the time of the onset of absence seizures in a very specific cerebral hemodynamic environment. These noninvasive approaches contribute to a better understanding of the electrical hemodynamic environment prior to seizure onset. Whether this may ultimately be relevant for diagnostic and therapeutic approaches requires further evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128878 | PMC |
http://dx.doi.org/10.1117/1.NPh.10.2.025005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!