A total of 920 cows of Holstein-based H line, Ayrshire-based A line, and cross-bred C line between H and A lines was used to determine the genotypic and gene frequencies of milk protein types and to study the relationships of milk protein loci to first lactation yields. Effects of milk protein loci on first lactation performance were examined using classification and gene substitution models. Gene frequencies at the five milk protein loci studied were similar to those reported in the literature. Gene substitution at alpha s1-casein locus showed the greatest effects on first lactation yields compared to those at other milk protein loci. Unfortunately, the favorable B allele at this locus is almost fixed (the frequency of the B allele = .955), a result of long-term selection for high milk production in dairy cattle. The extremely high frequency of a favorable allele at the alpha s1-casein locus imposes a limitation for further genetic improvement at this locus unless a more favorable mutation can be induced. Although favorable alleles at beta-casein, kappa-casein, and beta-lactoglobulin loci exerted smaller effects on first lactation performance than those at the alpha s1-casein locus, their moderate frequencies in the current population can be raised to improve lactation yields through milk protein typing. The combined contribution of the four milk protein loci accounted for 8.9% of phenotypic variance in milk yield, 8.6% in protein yield, ad 5.0% in fat yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.S0022-0302(86)80459-3 | DOI Listing |
Front Pharmacol
January 2025
School of Pharmacy, Xinjiang Medical University, Urumchi, China.
Background: In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM).
Methods: T2DM was induced in Wistar rats using streptozotocin.
J Sci Food Agric
January 2025
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China.
Background: Jersey milk, known for its high protein content, is an excellent base for yogurt production. Given that Jersey milk is derived from Jersey cows, this study was to isolate probiotics from Jersey cow feces and investigate their potential as alternative starter cultures for fermenting Jersey milk. Our goal was to develop new starter cultures specifically suited for Jersey yogurt production, while also contributing to the diversity of fermentation agents available for dairy products.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, S/N, 18071, Granada, Spain.
Cheese production involves various lactic acid bacteria (LAB) that break down lactose, milk proteins, and fats, producing key nutrients and influencing the cheese's flavor. They form communities that play a crucial role in determining the cheese's organoleptic properties. The composition of cheeses' microbial communities is shaped by physicochemical factors (e.
View Article and Find Full Text PDFFunct Plant Biol
January 2025
Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
Drying wheat (Triticum durum ) seeds within their spikes may improve the seed desiccation tolerance. This study aimed to understand the effect of drying wheat seeds within their spikes on their desiccation tolerance in association with GABA (γ-aminobutyric acid) content, malondialdehyde (MDA), the expression of three dehydrin genes (dhn , wcor , dreb ) during seed development. Seeds of wheat variety 'Hourani-Nawawi' were harvested at five developmental stages: (1) milk (ML); (2) soft dough (SD); (3) hard dough (HD); (4) physiological maturity (PM); and (5) harvest maturity (HM) and dried either attached to or detached from their spikes.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Riddet Institute, Massey University, Palmerston North, New Zealand.
The nutritive value of a protein is determined not only by its amino acid composition, but also by its digestibility in the gastrointestinal tract. The interaction between proteins and pepsin in the gastric stage is the first step and plays an important role in protein hydrolysis. Moreover, it affects the amino acid release rates and the allergenicity of the proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!