GPR35, a member of the orphan G-protein-coupled receptor, was recently implicated in colorectal cancer (CRC). However, whether targeting GPR35 by antagonists can inhibit its pro-cancer role has yet to be answered. We applied antagonist CID-2745687 (CID) in established GPR35 overexpressing and knock-down CRC cell lines to understand its anti-cell proliferation property and the underlying mechanism. Although GPR35 did not promote cell proliferation in 2D conditions, it promoted anchorage-independent growth in soft-agar, which was reduced by GPR35 knock-down and CID treatment. Furthermore, YAP/TAZ target genes were expressed relatively higher in GPR35 overexpressed cells and lower in GPR35 knock-down cells. YAP/TAZ activity is required for anchorage-independent growth of CRC cells. By detecting YAP/TAZ target genes, performing TEAD4 luciferase reporter assay, and examining YAP phosphorylation and TAZ protein expression level, we found YAP/TAZ activity is positively correlated to GPR35 expression level, which CID disrupted in GPR35 overexpressed cells, but not in GPR35 knock-down cells. Intriguingly, GPR35 agonists did not promote YAP/TAZ activity but ameliorated CID's inhibitory effect; GPR35-promoted YAP/TAZ activity was only partly attenuated by ROCK1/2 inhibitor. GPR35 promoted YAP/TAZ activity partly through Rho-GTPase with its agonist-independent constitutive activity, and CID exhibited its inhibitory effect. GPR35 antagonists are promising anti-cancer agents that target hyperactivation and overexpression of YAP/TAZ in CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126512 | PMC |
http://dx.doi.org/10.3389/fphar.2023.1126119 | DOI Listing |
Elife
January 2025
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.
View Article and Find Full Text PDFiScience
December 2024
Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
Increased blood amino acid levels (hyperaminoacidemia) stimulate pancreas expansion by unclear mechanisms. Here, by genetic and pharmacological disruption of glucagon receptor (GCGR) in mice and zebrafish, we found that the ensuing hyperaminoacidemia promotes pancreatic acinar cell proliferation and cell hypertrophy, which can be mitigated by a low protein diet in mice. In addition to mammalian target of rapamycin complex 1 (mTORC1) signaling, acinar cell proliferation required , the most highly expressed amino acid transporter gene in both species.
View Article and Find Full Text PDFMol Biol Rep
December 2024
State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad.
View Article and Find Full Text PDFKRAS mutations are frequent in various human cancers. The development of selective inhibitors targeting KRAS mutations has opened a new era for targeted therapy. However, intrinsic and acquired resistance to these inhibitors remains a major challenge.
View Article and Find Full Text PDFMol Cancer Ther
December 2024
Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.
Inactivation of the Hippo tumor suppressive pathway is frequently observed in mesothelioma, which leads to the activation of YAP and TAZ (YAP/TAZ) transcriptional coactivators. YAP/TAZ form complexes with TEAD family members, DNA-binding proteins, to activate transcription, which promotes cancer cell growth and proliferation. Recently developed TEAD inhibitors exhibit antitumor activity by inhibiting the formation of the transcription complex through binding to TEAD; however, the antitumor activity of TEAD inhibitors against mesothelioma remains to be fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!