Immune checkpoint inhibitors (ICIs) have revealed significant clinical values in different solid tumors and hematological malignancy, changing the landscape for the treatment of multiple types of cancer. However, only a subpopulation of patients has obvious tumor response and long-term survival after ICIs treatment, and many patients may experience other undesirable clinical features. Therefore, biomarkers are critical for patients to choose exact optimum therapy. Here, we reviewed existing preclinical and clinical biomarkers of immunotherapeutic efficacy and immune-related adverse events (irAEs). Based on efficacy prediction, pseudoprogression, hyperprogressive disease, or irAEs, these biomarkers were divided into cancer cell-derived biomarkers, tumor microenvironment-derived biomarkers, host-derived biomarkers, peripheral blood biomarkers, and multi-modal model and artificial intelligence assessment-based biomarkers. Furthermore, we describe the relation between ICIs efficacy and irAEs. This review provides the overall perspective of biomarkers of immunotherapeutic outcome and irAEs prediction during ICIs treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126660PMC
http://dx.doi.org/10.1177/17588359231163807DOI Listing

Publication Analysis

Top Keywords

biomarkers
10
preclinical clinical
8
clinical biomarkers
8
icis treatment
8
biomarkers immunotherapeutic
8
correlation preclinical
4
clinical
4
efficacy
4
biomarkers efficacy
4
efficacy toxicity
4

Similar Publications

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Preeclampsia is characterized by insufficient invasion of extravillous trophoblasts and is a consequence of failed adaption of extravillous trophoblasts to changes in the intrauterine environment developing embryo. Specific miRNAs are implicated in the development of preeclampsia (PE). miR-455-5p is present at low levels in PE but its role is not known.

View Article and Find Full Text PDF

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!