Phenology and productivity are important functional indicators of grassland ecosystems. However, our understanding of how intra-annual precipitation patterns affect plant phenology and productivity in grasslands is still limited. Here, we conducted a two-year precipitation manipulation experiment to explore the responses of plant phenology and productivity to intra-annual precipitation patterns at the community and dominant species levels in a temperate grassland. We found that increased early growing season precipitation enhanced the above-ground biomass of the dominant rhizome grass, , by advancing its flowering date, while increased late growing season precipitation increased the above-ground biomass of the dominant bunchgrass, , by delaying senescence. The complementary effects in phenology and biomass of the dominant species, and , maintained stable dynamics of the community above-ground biomass under intra-annual precipitation pattern variations. Our results highlight the critical role that intra-annual precipitation and soil moisture patterns play in the phenology of temperate grasslands. By understanding the response of phenology to intra-annual precipitation patterns, we can more accurately predict the productivity of temperate grasslands under future climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126275PMC
http://dx.doi.org/10.3389/fpls.2023.1142786DOI Listing

Publication Analysis

Top Keywords

intra-annual precipitation
24
precipitation patterns
16
dominant species
12
phenology productivity
12
above-ground biomass
12
biomass dominant
12
precipitation
9
plant phenology
8
growing season
8
season precipitation
8

Similar Publications

Decoding the drivers of variability in chlorophyll-a concentrations in the Pearl River estuary: Intra-annual and inter-annual analyses of environmental influences.

Environ Res

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.

Temporal variability and associated driving factors of sea surface chlorophyll-a concentration (Chl-a) in coastal waters have been extensively studied worldwide; however, the importance and spatial heterogeneity of these driving factors remain insufficiently documented. This study addressed this gap by investigating the Pearl River Estuary (PRE) from August 2002 to June 2016, using long-term remote sensing-derived data of Chl-a and potential driving factors, including total suspended solids (TSS), precipitation, photosynthetically active radiation (PAR), and sea surface temperature (SST); and in situ measurements of potential driving factors, including river discharge, wind speed, alongshore wind (u), cross-shore wind (v), and tidal range. A pixel-by-pixel correlation analysis was conducted to preliminarily examine the relationships between these potential driving factors and Chl-a.

View Article and Find Full Text PDF

Climate change and human activities are the primary drivers influencing changes in runoff dynamics. However, current understanding of future hydrological processes under scenarios of gradual climate change and escalating human activities remains uncertain, particularly in tropical regions affected by deforestation. Based on this, we employed the SWAT model coupled with the near future (2021-2040) and middle future (2041-2060) global climate models (GCMs) under four shared socioeconomic pathways (SSP1-2.

View Article and Find Full Text PDF

Consumers employ a variety of foraging strategies, and oftentimes the foraging strategy employed is related to resource availability. As consumers acquire resources, they may interact with their resource base in mutualistic or antagonistic ways-falling along a mutualism-antagonism continuum-with implications for ecological processes such as seed dispersal. However, patterns of resource use vary temporally, and textbook herbivores may switch foraging tactics to become more frugivorous in periods of greater fleshy fruit availability.

View Article and Find Full Text PDF
Article Synopsis
  • Geophytes, like Colchicum bulbocodium, are often overlooked in conservation efforts, despite their significance in early spring ecosystems and complex life cycles.
  • Weather factors such as temperature, precipitation, and light greatly influence their life cycles, but these effects can vary widely, making understanding them crucial for effective conservation strategies.
  • The study found that rising temperatures and insufficient cold periods negatively impact all life stages of C. bulbocodium, revealing that relying on a single year's flowering count can significantly underestimate population size, emphasizing the need for multi-year monitoring after colder, wetter conditions.
View Article and Find Full Text PDF

Among the set of phenological traits featuring mangrove ecosystems, litterfall production stands out with marked intra-annual and longer-term variation. Furthermore, mangrove forests resilience is one of the most important ecological attribute, reconciling the juxtaposed terrestrial and marine environment such transitional systems occupy. However, world's mangroves are nowadays facing recurrent climatic events, reflected in anomalies depicted by major drivers, including temperature and precipitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!