Forest conversion into pasture selects dung beetle traits at different biological scales depending on species pool composition.

Ecol Evol

Departamento de Ecologia, Instituto de Ciências Biológicas Universidade Federal de Goiás Avenida Esperança s/n, Campus Samambaia, ICB 5 CEP 74690-900 Goiânia Brazil.

Published: April 2023

The conversion of forests into open areas has large effects on the diversity and structure of native communities. The intensity of these effects may vary between regions, depending on the existence of native species adapted to open habitats in the regional pool or the time since habitat change.We assess the differences in species richness and functional diversity of dung beetle communities (Coleoptera: Scarabaeinae) between native forests and novel pasturelands of the Atlantic Forest and the Cerrado, two biomes with contrasting histories of human occupation in Brazil. We conducted standardized surveys in seven forest fragments and adjacent pastures in each region and measured 14 traits in individuals collected in each type of habitat at each particular site. We calculated functional richness, functional evenness, functional divergence, and community-weighted mean of traits for each area, and analyzed individual variation through nested variance decomposition and Trait Statistics.Communities were richer and more numerous at the Cerrado. We did not find any consistent relationship between functional diversity and forest conversion beyond the changes in species diversity. Although landscape changes were more recent at the Cerrado, the colonization of the new habitat by native species already adapted to open habitats lessens the functional loss in this biome. This indicates that habitat change's effects on trait diversity depend on the regional species pool rather than on time since land conversion.Forest conversion effects were primarily due to internal filtering. The effects of external filtering only appear at the intraspecific variance level, with contrasting differences between the Cerrado, where traits related to relocation behavior and size are selected, and the Atlantic Forest, where selection operates for traits related to relocation behavior and flight. These results evidence the importance of considering individual variance to address the responses of dung beetle communities to forest conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126313PMC
http://dx.doi.org/10.1002/ece3.9950DOI Listing

Publication Analysis

Top Keywords

forest conversion
12
dung beetle
12
species pool
8
native species
8
species adapted
8
adapted open
8
open habitats
8
pool time
8
richness functional
8
functional diversity
8

Similar Publications

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.

View Article and Find Full Text PDF

Photocatalytic selective oxidation of glycerol to formic acid and formaldehyde over surface cobalt-doped titanium dioxide.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:

Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.

View Article and Find Full Text PDF

Climate change threatens smallholder agriculture and food security in the Global South. While cropland expansion is often used to counter adverse climate effects despite ecological trade-offs, the benefits for diets and nutrition remain unclear. This study quantitatively examines relationships between climate anomalies, forest loss from cropland expansion, and dietary outcomes in Nigeria, Africa's most populous country.

View Article and Find Full Text PDF

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!