In the current study, we calculated the vaccine volume and amount of dead space in a syringe and needle during ChAdox1-n CoV vaccine administration using the air-filled technique. The aim is to reduce the dead space in syringes and needles in order to administer up to 12 doses per vial. The hypothetical situation uses a vial with a similar size as the ChAdox1-n CoV vial. We used distilled water (6.5 mL) to fill the same volume as five vials of ChAdox1-n CoV. When 0.48 mL of distilled water is drawn according to the number on the side of the barrel, an additional 0.10 mL of air can be used in the dead space of the distilled water in the syringe and needle for 60 doses, which can be divided into an average of 0.5 mL per dose. ChAdox1-n CoV was administered using a 1-mL syringe and 25G needle into 12 doses using this air-filled technique. The volume of the recipient vaccine will increase by 20% and save on the budget for low dead space syringes (LDS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144168PMC
http://dx.doi.org/10.3390/vaccines11040741DOI Listing

Publication Analysis

Top Keywords

dead space
20
chadox1-n cov
20
air-filled technique
12
space syringes
12
distilled water
12
reduce dead
8
syringes needles
8
cov vaccine
8
vaccine administration
8
syringe needle
8

Similar Publications

Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).

Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.

View Article and Find Full Text PDF

Background: This study aimed to gather information about parental practices, knowledge, and attitudes regarding infant sleep habits and environments, among families who practice non-recommended sleep practices.

Methods: We conducted one-on-one phone interviews with parents who had practiced non-recommended sleep methods with their infant and had or had not experienced an undesirable sleep event such as a fall. Interviews were recorded and coded with MAXQDA software.

View Article and Find Full Text PDF

Breast cancer is the most frequently diagnosed neoplasm all over the world and the second leading cause of cancer death in women. Breast cancer prognosis has significantly improved in the last years due to the advent of novel therapeutic options, both in the early and in advanced stages. However, the spread of the disease to the brain, accounting for 15-30% of the metastatic diagnoses, is challenging, and its poor prognosis represents an unmet medical need, leading to deterioration of quality of life and causing morbidity and mortality.

View Article and Find Full Text PDF

A novel super-resolution STED microscopy analysis approach to observe spatial MCU and MICU1 distribution dynamics in cells.

Biochim Biophys Acta Mol Cell Res

January 2025

Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria; BioTechMed, Graz, Austria. Electronic address:

The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions.

View Article and Find Full Text PDF

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!