Plant-derived agents are powerful bio-pesticides for the eco-friendly control of mosquito vectors and other blood-sucking arthropods. The larval toxicity of beta-carboline alkaloids against the Asian tiger mosquito, (Skuse) (Diptera: Culicidae), was investigated under laboratory conditions. The total alkaloid extracts (TAEs) and beta-carboline alkaloids (harmaline, harmine, harmalol, and harman) from seeds were isolated and tested in this bioassay. All alkaloids were tested either individually or as binary mixtures, using the co-toxicity coefficient (CTC) and Abbott's formula analysis. The results revealed considerable toxicity of the tested alkaloids against larvae. When all larval instars were exposed to the TAEs at 48 h post-treatment, the mortality of all larval instars varied in a concentration-dependent manner. The second-instar larvae were the most susceptible to different concentrations of TAEs, and the fourth-instar larvae were more tolerant to TAEs than the second-instar larvae. Especially, the third-instar larvae exposed to all alkaloids also showed that all doses resulted in an increased mortality of the third-instar larvae at 48 h post-treatment, and the toxicities of the tested alkaloids in a descending order were TAEs > harmaline > harmine > harmalol, with the LC values of 44.54 ± 2.56, 55.51 ± 3.01, 93.67 ± 4.53, and 117.87 ± 5.61 μg/mL at 48 h post-treatment, respectively. In addition, all compounds were also tested individually or in a 1:1 ratio (dose LC/LC) as binary mixtures to assess the synergistic toxicity of these binary combinations against the third-instar larvae at 24 and 48 h post-treatment, respectively. The results demonstrated that when tested as a binary mixture, all compounds (especially TAEs, harmaline, and harmine) showed their synergistic effects, exceeding the toxicity of each compound alone. Interestingly, the obtained data further revealed that the TAEs at sublethal doses (LC and LC) could significantly delay the larval development and decrease the pupation and emergence rates of . This phenomenon could be helpful in order to develop more effective control strategies for different notorious vector mosquitoes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143510PMC
http://dx.doi.org/10.3390/toxics11040341DOI Listing

Publication Analysis

Top Keywords

beta-carboline alkaloids
12
harmaline harmine
12
third-instar larvae
12
toxicity beta-carboline
8
larvae
8
alkaloids larvae
8
diptera culicidae
8
harmine harmalol
8
tested individually
8
binary mixtures
8

Similar Publications

Monoterpene indole alkaloids (MIAs) are a large, structurally diverse class of bioactive natural products. These compounds are biosynthetically derived from a stereoselective Pictet-Spengler condensation that generates a tetrahydro-β-carboline scaffold characterized by a 3 stereocenter. However, a subset of MIAs contain a non-canonical 3 stereocenter.

View Article and Find Full Text PDF

Two undescribed C-Labdane diterpenoid alkaloids, named forsylinfenines A and B (1-2), attributable to a rare 4,4,10,13-tetramethyl-1(2),3(4),5(10),6(7)-octahydrobenzo[f]quinolin skeleton, along with three known β-carboline-type alkaloids (3-5), were isolated. The chemical structures including absolute configurations of two undescribed compounds were established by means of integrated spectroscopic techniques and electronic circular dichroism (ECD) calculations. In addition, a plausible biosynthetic pathway for the formation of compounds 1 and 2 was proposed.

View Article and Find Full Text PDF

β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties.

View Article and Find Full Text PDF

Comparative Multi-Omics Survey Reveals Novel Specialized Metabolites and Biosynthetic Gene Clusters Under GacS Control in Pseudomonas donghuensis Strain SVBP6.

Mol Microbiol

December 2024

Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Bernal, Argentina.

In Pseudomonas donghuensis SVBP6, isolated from an agricultural field, the well-conserved Gac-Rsm pathway upregulates biosynthesis of the antifungal compound 7-hydroxytropolone (7-HT). However, 7-HT does not fully explain the strain's Gac-Rsm-dependent antimicrobial activity. Here, we combined comparative transcriptomic, proteomic, and metabolomic approaches to identify novel GacS-dependent biosynthetic gene clusters (BGC) and/or extracellular specialized metabolites.

View Article and Find Full Text PDF

C1 Functionalization of β-Carboline via Knochel-Hauser Base-Directed Metalation and Negishi Coupling.

J Org Chem

December 2024

Department of Synthetic Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States.

The synthesis of C1-functionalized β-carbolines from -Boc norharman is described. Substitution is realized by employing the Knochel-Hauser base (TMPMgCl·LiCl) followed by transmetalation with ZnCl and subsequent Negishi cross-coupling of the resulting organozinc species. A variety of aryl or heteroaryl bromides participated in this one-pot reaction sequence, allowing for rapid diversification of the β-carboline scaffold in moderate to excellent yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!