AI Article Synopsis

  • Milk production during breastfeeding is influenced by hormones and can be affected by exposure to endocrine-disrupting chemicals, especially per- and polyfluoroalkyl substances (PFAS).
  • PFAS exposure may result in negative outcomes such as underdeveloped mammary glands in animals and shorter breastfeeding durations in humans, prompting a review of relevant studies.
  • A systematic search identified six studies that consistently linked higher PFAS exposure to reduced breastfeeding duration, particularly with specific PFAS compounds like PFOS, PFOA, and PFNA.

Article Abstract

Milk formation in the breast during breastfeeding is a complex hormonally regulated process, potentially sensitive to the effects of endocrine-disrupting chemical exposures. The environmental chemicals, per- and polyfluoroalkyl substances (PFAS) are known endocrine disruptors. PFAS exposure have been associated with insufficient mammary gland development in mice and reduced breastfeeding duration in humans. The aim of this review was to gather the epidemiological evidence on the association between PFAS exposure and breastfeeding duration. Using PubMed and Embase, we performed a systematic literature search (on 23 January 2023) to identify epidemiological studies examining the association between maternal PFAS exposure and breastfeeding duration. Animal studies, reviews, and non-English studies were excluded. The risk of bias was assessed using the risk of bias in non-randomized studies of exposures tool. Estimates describing the association between PFAS exposure and the duration of breastfeeding were identified, and the data were synthesized separately for each type of PFAS and for the duration of exclusive and total breastfeeding. Six studies with between 336 and 2374 participants each were identified. PFAS exposure was assessed in serum samples (five studies) or based on residential address (one study). Five out of six studies found shorter total duration of breastfeeding with higher PFAS exposure. The most consistent associations were seen for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). The finding of a potential causal association between PFAS exposure and breastfeeding duration is in agreement with findings from experimental studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145877PMC
http://dx.doi.org/10.3390/toxics11040325DOI Listing

Publication Analysis

Top Keywords

pfas exposure
28
breastfeeding duration
16
association pfas
12
exposure breastfeeding
12
breastfeeding
9
studies
9
pfas
9
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
epidemiological studies
8

Similar Publications

Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.

View Article and Find Full Text PDF

Persistent pollutant exposure impacts metabolomic profiles in polar bears and ringed seals from the High Arctic and Hudson Bay, Canada.

Environ Res

January 2025

Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada. Electronic address:

Metabolomics measures low molecular weight endogenous metabolites and changes linked to contaminant exposure in biota. Few studies have explored the relationship between metabolomics and contaminants in Arctic wildlife. We analyzed 239 endogenous metabolites and ∼150 persistent organic pollutants (POPs), including total mercury (THg), in the liver of polar bears and their ringed seal prey harvested from low Canadian Arctic (western Hudson Bay; WHB) and high Arctic (HA) locations during 2015-2016.

View Article and Find Full Text PDF

Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics.

J Hazard Mater

January 2025

School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China. Electronic address:

Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (CF-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs.

View Article and Find Full Text PDF

Environmental contaminants assessment for frequently harvested migratory waterfowl in the Northeast Atlantic flyway.

Sci Total Environ

January 2025

Wildlife Health Lab, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA. Electronic address:

Waterfowl serve as indicators of ecosystem health and represent a pathway of contaminant exposure for hunters who consume them. In the northeast Atlantic Flyway, data on baseline contaminant loads in waterfowl are lacking. We assessed five species of commonly harvested (and consumed) waterfowl for mercury, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and per- and polyfluoroalkyl substances (PFAS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!