Using artificial intelligence (AI) and the IoT (Internet of Things) is a primary focus of applied engineering research to improve agricultural efficiency. This review paper summarizes the engagement of artificial intelligence models and IoT techniques in detecting, classifying, and counting cotton insect pests and corresponding beneficial insects. The effectiveness and limitations of AI and IoT techniques in various cotton agricultural settings were comprehensively reviewed. This review indicates that insects can be detected with an accuracy of between 70 and 98% using camera/microphone sensors and enhanced deep learning algorithms. However, despite the numerous pests and beneficial insects, only a few species were targeted for detection and classification by AI and IoT systems. Not surprisingly, due to the challenges of identifying immature and predatory insects, few studies have designed systems to detect and characterize them. The location of the insects, sufficient data size, concentrated insects on the image, and similarity in species appearance are major obstacles when implementing AI. Similarly, IoT is constrained by a lack of effective field distance between sensors when targeting insects according to their estimated population size. Based on this study, the number of pest species monitored by AI and IoT technologies should be increased while improving the system's detection accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146184PMC
http://dx.doi.org/10.3390/s23084127DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
iot techniques
8
beneficial insects
8
insects
7
iot
6
review successes
4
successes impeding
4
impeding challenges
4
challenges iot-based
4
iot-based insect
4

Similar Publications

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!