Real-time monitoring of gas-liquid pipe flow is highly demanded in industrial processes in the chemical and power engineering sectors. Therefore, the present contribution describes the novel design of a robust wire-mesh sensor with an integrated data processing unit. The developed device features a sensor body for industrial conditions of up to 400 °C and 135 bar as well as real-time processing of measured data, including phase fraction calculation, temperature compensation and flow pattern identification. Furthermore, user interfaces are included via a display and 4…20 mA connectivity for the integration into industrial process control systems. In the second part of the contribution, we describe the experimental verification of the main functionalities of the developed system. Firstly, the calculation of cross-sectionally averaged phase fractions along with temperature compensation was tested. Considering temperature drifts of up to 55 K, an average deviation of 3.9% across the full range of the phase fraction was found by comparison against image references from camera recordings. Secondly, the automatic flow pattern identification was tested in an air-water two-phase flow loop. The results reveal reasonable agreement with well-established flow pattern maps for both horizontal and vertical pipe orientations. The present results indicate that all prerequisites for an application in industrial environments in the near future are fulfilled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143015PMC
http://dx.doi.org/10.3390/s23084067DOI Listing

Publication Analysis

Top Keywords

flow pattern
12
gas-liquid pipe
8
pipe flow
8
wire-mesh sensor
8
phase fraction
8
temperature compensation
8
pattern identification
8
flow
6
industrial
5
real-time analysis
4

Similar Publications

Target cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors; 5-([2,5-Dihydroxybenzyl]amino)salicylamides (Compounds 1-11) were examined for potential anticancer activity, with a trial to assess the underlying possible mechanisms. Compounds were assessed at a single dose against 60 cancer cell lines panel and those with the highest activity were tested in the five-dose assay. COMPARE analysis was conducted to explore potential mechanisms underlying their biological activity.

View Article and Find Full Text PDF

In this work, we introduce spatial and chemical saturation options for artefact reduction in magnetic resonance fingerprinting (MRF) and assess their impact on T and T mapping accuracy. An existing radial MRF pulse sequence was modified to enable spatial and chemical saturation. Phantom experiments were performed to demonstrate flow artefact reduction and evaluate the accuracy of the T and T maps.

View Article and Find Full Text PDF

Liposomal propolis loaded xanthan gum-salep hydrogels: Preparation, characterization, and in vitro bioaccessibility of phenolics.

Int J Biol Macromol

January 2025

Food Eng. Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210 Istanbul, Turkiye. Electronic address:

Liposomes are gaining interest in food and pharmaceutical applications due to their biocompatibility and non-toxicity. However, they suffer from low colloidal stability, leakage of encapsulated substances, and poor resistance to intestinal digestive conditions. To address these issues, propolis extract (PE) was encapsulated within a hybrid system combining liposomes and hydrogels.

View Article and Find Full Text PDF

Ethyl 2,2-difluoro-2-(2-oxo-2H-chromen-3-yl) acetate inhibits the malignant biological behaviors of colorectal cancer by restricting the phosphorylation and nuclear translocation of STAT3.

Exp Cell Res

January 2025

Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China. Electronic address:

To investigate the effect of a novel coumarin derivative, ethyl 2,2-difluoro-2 - (2-oxo-2H-chromen-3-yl) acetate (C2F), on the malignant biological behaviors of colorectal cancer (CRC) and elucidate its mechanism. In vitro, the effects of C2F on the proliferation, apoptosis, migration, invasion, and cell cycle of CRC cells were analyzed by MTT assay, EdU stainning, colony formation assay, flow cytometry, wound healing and transwell assay. The anti-CRC activity of C2F was evaluated in a nude mice xenograft model in vivo.

View Article and Find Full Text PDF

In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!