A compact back-end interface for silicon photomultipliers (SiPMs) implementing Zener diode-based temperature compensation has been developed for the remote detection of beta and gamma radiation. Remote detection is facilitated by the development of an efficient data management system utilising MySQL database storage for recording periodic spectra data for wireless access over a private Wi-Fi network. A trapezoidal peak shaping algorithm has been implemented on an FPGA for the continuous conversation of pulses from the SiPM, signifying the detection of a radiological particle, into spectra. This system has been designed to fit within a 46 mm cylindrical diameter for in situ characterization, and can be attached to one or more SiPMs used in conjunction with a range of scintillators. LED blink tests have been used to optimise the trapezoidal shaper coefficients to maximise the resolution of the recorded spectra. Experiments with an array of SiPMs integrated with a NaI(Tl) scintillator exposed to sealed sources of Co-60, Cs-137, Na-22 and Am-241 have shown that the detector achieves a peak efficiency of 27.09 ± 0.13% for a gamma peak at 59.54 keV produced by Am-241, and a minimum energy resolution (Delta E/E) of 4.27 ± 1.16% for the 1332.5 keV gamma peak from Co-60.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141715PMC
http://dx.doi.org/10.3390/s23084053DOI Listing

Publication Analysis

Top Keywords

compact back-end
8
temperature compensation
8
efficient data
8
data management
8
remote detection
8
gamma peak
8
back-end electronics
4
electronics temperature
4
compensation efficient
4
management situ
4

Similar Publications

The rapid growth of Internet of Things (IoT) devices necessitates efficient data compression techniques to manage the vast amounts of data they generate. Chemiresistive sensor arrays (CSAs), a simple yet essential component in IoT systems, produce large datasets due to their simultaneous multi-sensor operations. Classical principal component analysis (cPCA), a widely used solution for dimensionality reduction, often struggles to preserve critical information in complex datasets.

View Article and Find Full Text PDF

Optical neural networks have facilitated groundbreaking advancements in machine vision, intelligent healthcare, and autonomous driving systems. However, fixed optical network architectures encounter a dramatic challenge in achieving large-scale parameter tuning without necessitating modifications to the physical components, thereby limiting their capacity to handle intricate application scenarios. Here, a meta-imager based on tunable metasurfaces is proposed, which acts as an optoelectronic front end in collaboration with a digital back end to transfer computationally intensive convolution operations to super integration, highly parallel optical devices.

View Article and Find Full Text PDF

Traditional full-Stokes polarization imaging typically relies on the movements or segmentation of imaging systems, often accompanied by sacrifices in temporal or spatial resolution. Therefore, simultaneous encoding of full-Stokes vectors at the pixel scale is of great significance. Benefiting from the multi-dimensional light field control capability of metasurfaces, a coded aperture metasurface for polarization imaging is proposed in this paper, which can achieve pixel-level encoding of four Stokes vectors in a single imaging session.

View Article and Find Full Text PDF

Multistate, Ultrathin, Back-End-of-Line-Compatible AlScN Ferroelectric Diodes.

ACS Nano

June 2024

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

The growth in data generation necessitates efficient data processing technologies to address the von Neumann bottleneck in conventional computer architecture. Memory-driven computing, which integrates nonvolatile memory (NVM) devices in a 3D stack, is gaining attention, with CMOS back-end-of-line (BEOL)-compatible ferroelectric (FE) diodes being ideal due to their two-terminal design and inherently selector-free nature, facilitating high-density crossbar arrays. Here, we demonstrate BEOL-compatible, high-performance FE diodes scaled to 5, 10, and 20 nm FE AlScN/AlScN films.

View Article and Find Full Text PDF

As an intrinsically direct current device, quantum-dot LED cannot be directly driven by household alternating current electricity. Thus, a driver circuit is required, which increases the complexity and cost. Here, by using a transparent and conductive indium-zinc-oxide as an intermediate electrode, we develop a tandem quantum-dot LED that can be operated at both negative and positive alternating current cycles with an external quantum efficiency of 20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!