A Threshold Helium Leakage Detection Switch with Ultra Low Power Operation.

Sensors (Basel)

Department of Architectural Engineering, Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Omaha, NE 68182, USA.

Published: April 2023

Detecting helium leakage is important in many applications, such as in dry cask nuclear waste storage systems. This work develops a helium detection system based on the relative permittivity (dielectric constant) difference between air and helium. This difference changes the status of an electrostatic microelectromechanical system (MEMS) switch. The switch is a capacitive-based device and requires a very negligible amount of power. Exciting the switch's electrical resonance enhances the MEMS switch sensitivity to detect low helium concentration. This work simulates two different MEMS switch configurations: a cantilever-based MEMS modeled as a single-degree-freedom model and a clamped-clamped beam MEMS molded using the COMSOL Multiphysics finite-element software. While both configurations demonstrate the switch's simple operation concept, the clamped-clamped beam was selected for detailed parametric characterization due to its comprehensive modeling approach. The beam detects at least 5% helium concentration levels when excited at 3.8 MHz, near electrical resonance. The switch performance decreases at lower excitation frequencies or increases the circuit resistance. The MEMS sensor detection level was relatively immune to beam thickness and parasitic capacitance changes. However, higher parasitic capacitance increases the switch's susceptibility to errors, fluctuations, and uncertainties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145900PMC
http://dx.doi.org/10.3390/s23084019DOI Listing

Publication Analysis

Top Keywords

mems switch
12
helium leakage
8
electrical resonance
8
helium concentration
8
clamped-clamped beam
8
parasitic capacitance
8
switch
6
mems
6
helium
5
threshold helium
4

Similar Publications

This paper reviews and compares electrostatically actuated MEMS (micro-electro-mechanical system) arrays for light modulation and light steering in which transmission through the substrate is required. A comprehensive comparison of the technical achievements of micromirror arrays and microshutter arrays is provided. The main focus of this paper is MEMS micromirror arrays for smart glass in building windows and façades.

View Article and Find Full Text PDF

Design of Interface ASIC with Power-Saving Switches for Capacitive Accelerometers.

Micromachines (Basel)

January 2025

College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China.

High-precision, low-power MEMS accelerometers are extensively utilized across civilian applications. Closed-loop accelerometers employing switched-capacitor (SC) circuit topologies offer notable advantages, including low power consumption, high signal-to-noise ratio (SNR), and excellent linearity. Addressing the critical demand for high-precision, low-power MEMS accelerometers in modern geophones, this work focuses on the design and implementation of closed-loop interface ASICs (Application-Specific Integrated Circuits).

View Article and Find Full Text PDF

Mechanical force-induced interlayer sliding in interfacial ferroelectrics.

Nat Commun

January 2025

Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China.

Moiré superlattices in two-dimensional stacks have attracted worldwide interest due to their unique electronic properties. A typical example is the moiré ferroelectricity, where adjacent moirés exhibit opposite spontaneous polarization that can be switched through interlayer sliding. However, in contrast to ideal regular ferroelectric moiré domains (equilateral triangles) built in most theoretical models, the unavoidable irregular moiré supercells (non-equilateral triangles) induced by external strain fields during the transfer process have been given less attention.

View Article and Find Full Text PDF

The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.

View Article and Find Full Text PDF

Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN/metal interfaces.

Nanoscale Horiz

January 2025

SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China.

Janus MoSiGeN monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN monolayer and metal electrode contacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!