Edge computing is a viable approach to improve service delivery and performance parameters by extending the cloud with resources placed closer to a given service environment. Numerous research papers in the literature have already identified the key benefits of this architectural approach. However, most results are based on simulations performed in closed network environments. This paper aims to analyze the existing implementations of processing environments containing edge resources, taking into account the targeted quality of service (QoS) parameters and the utilized orchestration platforms. Based on this analysis, the most popular edge orchestration platforms are evaluated in terms of their workflow that allows the inclusion of remote devices in the processing environment and their ability to adapt the logic of the scheduling algorithms to improve the targeted QoS attributes. The experimental results compare the performance of the platforms and show the current state of their readiness for edge computing in real network and execution environments. These findings suggest that Kubernetes and its distributions have the potential to provide effective scheduling across the resources on the network's edge. However, some challenges still have to be addressed to completely adapt these tools for such a dynamic and distributed execution environment as edge computing implies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143384 | PMC |
http://dx.doi.org/10.3390/s23084008 | DOI Listing |
Nat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.
View Article and Find Full Text PDFSci Rep
January 2025
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.
Land Surface Temperature (LST) is widely recognized as a sensitive indicator of climate change, and it plays a significant role in ecological research. The ERA5-Land LST dataset, developed and managed by the European Centre for Medium-Range Weather Forecasts (ECMWF), is extensively used for global or regional LST studies. However, its fine-scale application is limited by its low spatial resolution.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Parkinson's Disease (PD) is a neurodegenerative disorder that is often accompanied by slowness of movement (bradykinesia) or gradual reduction in the frequency and amplitude of repetitive movement (hypokinesia). There is currently no cure for PD, but early detection and treatment can slow down its progression and lead to better treatment outcomes. Vision-based approaches have been proposed for the early detection of PD using gait.
View Article and Find Full Text PDFPLoS One
January 2025
Yunnan Tengjian Technology Co., Ltd, Kunming, China.
The rapid development of Internet of Things technology has promoted the popularization of Internet of Vehicles, and its safety and reliability have become the focus of intelligent transportation system research. Vehicle-road collaboration relies on the collaborative computing and storage resources of the vehicle on-board unit (OBU), which are usually limited. When the vehicle in the edge area needs to do computing tasks such as intelligent driving, but its own computing resources are insufficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!