A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Optimized DNN Model for Real-Time Inferencing on an Embedded Device. | LitMetric

For many automotive functionalities in Advanced Driver Assist Systems (ADAS) and Autonomous Driving (AD), target objects are detected using state-of-the-art Deep Neural Network (DNN) technologies. However, the main challenge of recent DNN-based object detection is that it requires high computational costs. This requirement makes it challenging to deploy the DNN-based system on a vehicle for real-time inferencing. The low response time and high accuracy of automotive applications are critical factors when the system is deployed in real time. In this paper, the authors focus on deploying the computer-vision-based object detection system on the real-time service for automotive applications. First, five different vehicle detection systems are developed using transfer learning technology, which utilizes the pre-trained DNN model. The best performing DNN model showed improvements of 7.1% in Precision, 10.8% in Recall, and 8.93% in F1 score compared to the original YOLOv3 model. The developed DNN model was optimized by fusing layers horizontally and vertically to deploy it in the in-vehicle computing device. Finally, the optimized DNN model is deployed on the embedded in-vehicle computing device to run the program in real-time. Through optimization, the optimized DNN model can run 35.082 fps (frames per second) on the NVIDIA Jetson AGA, 19.385 times faster than the unoptimized DNN model. The experimental results demonstrate that the optimized transferred DNN model achieved higher accuracy and faster processing time for vehicle detection, which is vital for deploying the ADAS system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142959PMC
http://dx.doi.org/10.3390/s23083992DOI Listing

Publication Analysis

Top Keywords

dnn model
32
optimized dnn
12
model
9
real-time inferencing
8
dnn
8
object detection
8
automotive applications
8
vehicle detection
8
in-vehicle computing
8
computing device
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!