UnVELO: Unsupervised Vision-Enhanced LiDAR Odometry with Online Correction.

Sensors (Basel)

Faculty of the College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

Published: April 2023

Due to the complementary characteristics of visual and LiDAR information, these two modalities have been fused to facilitate many vision tasks. However, current studies of learning-based odometries mainly focus on either the visual or LiDAR modality, leaving visual-LiDAR odometries (VLOs) under-explored. This work proposes a new method to implement an unsupervised VLO, which adopts a LiDAR-dominant scheme to fuse the two modalities. We, therefore, refer to it as unsupervised vision-enhanced LiDAR odometry (UnVELO). It converts 3D LiDAR points into a dense vertex map via spherical projection and generates a vertex color map by colorizing each vertex with visual information. Further, a point-to-plane distance-based geometric loss and a photometric-error-based visual loss are, respectively, placed on locally planar regions and cluttered regions. Last, but not least, we designed an online pose-correction module to refine the pose predicted by the trained UnVELO during test time. In contrast to the vision-dominant fusion scheme adopted in most previous VLOs, our LiDAR-dominant method adopts the dense representations for both modalities, which facilitates the visual-LiDAR fusion. Besides, our method uses the accurate LiDAR measurements instead of the predicted noisy dense depth maps, which significantly improves the robustness to illumination variations, as well as the efficiency of the online pose correction. The experiments on the KITTI and DSEC datasets showed that our method outperformed previous two-frame-based learning methods. It was also competitive with hybrid methods that integrate a global optimization on multiple or all frames.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142647PMC
http://dx.doi.org/10.3390/s23083967DOI Listing

Publication Analysis

Top Keywords

unsupervised vision-enhanced
8
vision-enhanced lidar
8
lidar odometry
8
visual lidar
8
lidar
6
unvelo unsupervised
4
odometry online
4
online correction
4
correction complementary
4
complementary characteristics
4

Similar Publications

UnVELO: Unsupervised Vision-Enhanced LiDAR Odometry with Online Correction.

Sensors (Basel)

April 2023

Faculty of the College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

Due to the complementary characteristics of visual and LiDAR information, these two modalities have been fused to facilitate many vision tasks. However, current studies of learning-based odometries mainly focus on either the visual or LiDAR modality, leaving visual-LiDAR odometries (VLOs) under-explored. This work proposes a new method to implement an unsupervised VLO, which adopts a LiDAR-dominant scheme to fuse the two modalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!