Measurement of Simple Reaction Time of the Cyclist in the Laboratory and Natural Environment Condition.

Sensors (Basel)

Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 72A Mikołowska Street, 40-065 Katowice, Poland.

Published: April 2023

The most commonly used reaction time tests within the athlete community require appropriate testing conditions and equipment, most frequently laboratory ones, which are not suitable for testing athletes in their natural environment and do not fully represent athletes' natural capabilities and the influence of the surrounding environment. Therefore, this study's goal is to compare the simple reaction times (SRTs) of cyclists during tests in laboratory conditions and in natural cycling surroundings. The young cyclists (55 participants) took part in the study. The SRT was measured in a quiet laboratory room with the use of the special device. During riding and standing with a bike outdoors, the necessary signal was captured and transmitted by a folic tactile sensor (FTS) and an extra intermediary circuit (both invented by our team member) connected to a muscle activity measurement system (Noraxon DTS Desktop, Scottsdale, AZ, USA). The results showed that external conditions significantly affect the SRT, with it being the longest when riding and the shortest if measured in an isolated laboratory room, but without an effect of gender. Typically, men have a shorter reaction time, but our result supports other observations, where people with an active lifestyle show no sex differentiation in SRT. The proposed FTS with an intermediary circuit allowed us to measure SRT with the use of non-dedicated equipment and avoid buying a new one for a single specific use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142047PMC
http://dx.doi.org/10.3390/s23083898DOI Listing

Publication Analysis

Top Keywords

reaction time
12
simple reaction
8
natural environment
8
laboratory room
8
intermediary circuit
8
laboratory
5
measurement simple
4
reaction
4
time cyclist
4
cyclist laboratory
4

Similar Publications

Background: Aleutian mink disease, mink viral enteritis and canine distemper are known as the three most serious diseases that cause great economic loss in the mink industry. In clinical practice, aleutian mink disease virus (AMDV), mink enteritis virus (MEV) and canine distemper virus (CDV) are common mixed infections, and they have similar clinical clinical signs, such as diarrhoea. Therefore, a rapid and accurate differential diagnosis method for use on mink ranches is essential for the control of these three pathogens.

View Article and Find Full Text PDF

Nonacademic predictors of China medical licensing examination.

BMC Med Educ

January 2025

Department of Radiology and Tianjin Key Lab of Functional Imaging and Tianjin Institute of Radiology and State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.

Background: National Medical Licensing Examination (NMLE) is the entrance exam for medical practice in China, and its general medical knowledge test (GMKT) evaluates abilities of medical students to comprehensively apply medical knowledge to clinical practice. This study aimed to identify nonacademic predictors of GMKT performance, which would benefit medical schools in designing appropriate strategies and techniques to facilitate the transition from medical students to qualified medical practitioners.

Methods: In 1202 medical students, we conducted the deletion-substitution-addition (DSA) and structural equation model (SEM) analyses to identify nonacademic predictors of GMKT performance from 98 candidate variables including early life events, physical conditions, psychological and personality assessments, cognitive abilities, and socioeconomic conditions.

View Article and Find Full Text PDF

Background: Point of need diagnostics provide efficient testing capability for remote or austere locations, decreasing the time to answer by minimizing travel or sample transport requirements. Loop-mediated isothermal amplification (LAMP) is an appealing technology for point-of-need diagnostics due to its rapid analysis time and minimal instrumentation requirements.

Methods: Here, we designed and optimized nine LAMP assays that are sensitive and specific to targeted bacterial select agents including Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Brucella spp.

View Article and Find Full Text PDF

Shenmai Injection Reduces Cardiomyocyte Apoptosis Induced by Doxorubicin through miR-30a/Bcl-2.

Chin J Integr Med

January 2025

Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.

Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.

Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.

View Article and Find Full Text PDF

The catalytic performance of Candida antarctica lipase B (CALB) immobilized on silica-coated magnetic nanoparticles was evaluated for biodiesel production via methanolysis of rapeseed oil. Two different covalent immobilization approaches were compared to assess the effect of immobilization protocols on lipase efficiency. The first approach involved immobilization of CALB on amine-functionalized magnetic nanoparticles (MNPs), which targeted the Lys-rich regions of the enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!