Application of mmWave Radar Sensor for People Identification and Classification.

Sensors (Basel)

Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1010, New Zealand.

Published: April 2023

Device-free indoor identification of people with high accuracy is the key to providing personalized services. Visual methods are the solution but they require a clear view and good lighting conditions. Additionally, the intrusive nature leads to privacy concerns. A robust identification and classification system using the mmWave radar and an improved density-based clustering algorithm along with LSTM are proposed in this paper. The system leverages mmWave radar technology to overcome challenges posed by varying environmental conditions on object detection and recognition. The point cloud data are processed using a refined density-based clustering algorithm to extract ground truth in a 3D space accurately. A bi-directional LSTM network is employed for individual user identification and intruder detection. The system achieved an overall identification accuracy of 93.9% and an intruder detection rate of 82.87% for groups of 10 individuals, demonstrating its effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146058PMC
http://dx.doi.org/10.3390/s23083873DOI Listing

Publication Analysis

Top Keywords

mmwave radar
12
identification classification
8
density-based clustering
8
clustering algorithm
8
intruder detection
8
identification
5
application mmwave
4
radar sensor
4
sensor people
4
people identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!