Over the last decade, the Short Message Service (SMS) has become a primary communication channel. Nevertheless, its popularity has also given rise to the so-called SMS spam. These messages, i.e., spam, are annoying and potentially malicious by exposing SMS users to credential theft and data loss. To mitigate this persistent threat, we propose a new model for SMS spam detection based on pre-trained Transformers and Ensemble Learning. The proposed model uses a text embedding technique that builds on the recent advancements of the GPT-3 Transformer. This technique provides a high-quality representation that can improve detection results. In addition, we used an Ensemble Learning method where four machine learning models were grouped into one model that performed significantly better than its separate constituent parts. The experimental evaluation of the model was performed using the SMS Spam Collection Dataset. The obtained results showed a state-of-the-art performance that exceeded all previous works with an accuracy that reached 99.91%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146782 | PMC |
http://dx.doi.org/10.3390/s23083861 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!