There is an ongoing forensic and security need for rapid, on-scene, easy-to-use, non-invasive chemical identification of intact energetic materials at pre-explosion crime scenes. Recent technological advances in instrument miniaturization, wireless transfer and cloud storage of digital data, and multivariate data analysis have created new and very promising options for the use of near-infrared (NIR) spectroscopy in forensic science. This study shows that in addition to drugs of abuse, portable NIR spectroscopy with multivariate data analysis also offers excellent opportunities to identify intact energetic materials and mixtures. NIR is able to characterize a broad range of chemicals of interest in forensic explosive investigations, covering both organic and inorganic compounds. NIR characterization of actual forensic casework samples convincingly shows that this technique can handle the chemical diversity encountered in forensic explosive investigations. The detailed chemical information contained in the 1350-2550 nm NIR reflectance spectrum allows for correct compound identification within a given class of energetic materials, including nitro-aromatics, nitro-amines, nitrate esters, and peroxides. In addition, the detailed characterization of mixtures of energetic materials, such as plastic formulations containing PETN (pentaerythritol tetranitrate) and RDX (trinitro triazinane), is feasible. The results presented illustrate that the NIR spectra of energetic compounds and mixtures are sufficiently selective to prevent false-positive results for a broad range of food-related products, household chemicals, raw materials used for the production of home-made explosives, drugs of abuse, and products that are sometimes used to create hoax improvised explosive devices. However, for frequently encountered pyrotechnic mixtures, such as black powder, flash powder, and smokeless powder, and some basic inorganic raw materials, the application of NIR spectroscopy remains challenging. Another challenge is presented by casework samples of contaminated, aged, and degraded energetic materials or poor-quality HMEs (home-made explosives), for which the spectral signature deviates significantly from the reference spectra, potentially leading to false-negative outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146942 | PMC |
http://dx.doi.org/10.3390/s23083804 | DOI Listing |
Sci Rep
December 2024
College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States.
The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties.
View Article and Find Full Text PDFHeliyon
December 2024
University of Münster, Schlossplatz 2, Münster, 48149, Germany.
The introduction of next-generation extremely energetic particle accelerator facilities, such as the High-Luminosity upgrade of the LHC (HL-LHC) or the proposed future circular collider (FCC), will dramatically increase the energy stored in the circulating particle beams. This will critically affect the thermo-physical and mechanical properties of the materials adopted, possibly compromising their reliability during the operating lifetime. In this scenario, it is paramount to assess the dynamic thermo-mechanical response of materials presently used, or being developed for future use, in beam intercepting devices exposed to potentially destructive events caused by the impact of energetic particle beams.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034 Strasbourg, France.
The high potential of non-covalent arene-fluoroarene intermolecular interactions in the design of liquid crystals lies in their ability to strongly promote self-assembly, improve the order and stability of the supramolecular mesophases, and enable tuneability of the optical and electronic properties, which can potentially be exploited for advanced applications in display technologies, photonic devices, sensors, and organic electronics. We recently successfully reported the straightforward synthesis of several mesogens containing four lateral aliphatic chains and derived from the classical triphenylene core self-assembling in columnar mesophases based on this paradigm. These mesogenic compounds were simply obtained in good yields by the nucleophilic substitution (SFAr) of various types of commercially available fluoroarenes with the electrophilic organolithium derivatives 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl (2Li- ).
View Article and Find Full Text PDFMater Horiz
December 2024
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, and School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China.
Electrochromic smart windows can realize intelligent photothermal regulation by applying a low potential, which is of great significance for energy-saving buildings and achieving low carbon emission. However, the dense structure of conventional metal oxide electrochromic materials limits ion transport efficiency, resulting in poor electrochromic properties. Here, we propose a surface crystal reconstruction strategy for cubic NiO through phosphorylation (P-NiO) to build energetic reactive interfaces and enhance the electrochromic performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!