Aromatic polyimide has good mechanical properties and high-temperature resistance. Based on this, benzimidazole is introduced into the main chain, and its intermolecular (internal) hydrogen bond can increase mechanical and thermal properties and electrolyte wettability. Aromatic dianhydride 4,4'-oxydiphthalic anhydride (ODPA) and benzimidazole-containing diamine 6,6'-bis [2-(4-aminophenyl)benzimidazole] (BAPBI) were synthesized by means of a two-step method. Imidazole polyimide (BI-PI) was used to make a nanofiber membrane separator (NFMS) by electrospinning process, using its high porosity and continuous pore characteristics to reduce the ion diffusion resistance of the NFMS, enhancing the rapid charge and discharge performance. BI-PI has good thermal properties, with a Td5% of 527 °C and a dynamic mechanical analysis Tg of 395 °C. The tensile strength of the NFMS increased from 10.92MPa to 51.15MPa after being hot-pressed. BI-PI has good miscibility with LIB electrolyte, the porosity of the film is 73%, and the electrolyte absorption rate reaches 1454%. That explains the higher ion conductivity (2.02 mS cm) of NFMS than commercial one (0.105 mS cm). When applied to LIB, it is found that it has high cyclic stability and excellent rate performance at high current density (2 C). BI-PI (120 Ω) has a lower charge transfer resistance than the commercial separator Celgard H1612 (143 Ω).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140945PMC
http://dx.doi.org/10.3390/polym15081954DOI Listing

Publication Analysis

Top Keywords

thermal properties
8
bi-pi good
8
studies application
4
application polyimidobenzimidazole
4
polyimidobenzimidazole based
4
based nanofiber
4
nanofiber material
4
material separation
4
separation membrane
4
membrane lithium-ion
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Effects of xanthan gum and hydroxypropyl methylcellulose on the structure and physicochemical properties of triticale gluten during fermentation.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

The effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical and structural properties of triticale gluten (TG) during fermentation were investigated. Rheological analysis revealed that the addition of XG or HPMC decreased G' and G″ values, while increasing tanδ and recovery strain of triticale gluten during fermentation. Thermal gravimetric analysis demonstrated that triticale gluten added with XG after fermentation exhibited the highest residual mass, showing a 9.

View Article and Find Full Text PDF

Unveiling the potential of pullulan in enhancing ketoprofen release from PHBV filaments.

Int J Biol Macromol

January 2025

Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil. Electronic address:

In this study, sustainable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and pullulan (PUL)/PHBV filaments were prepared with ketoprofen for scaffold preparation. The research aimed evaluate the influence of pullulan in the filament properties, such as thermal, morphological, and biological behavior. Hansen parameters demonstrated the difference in the miscibility of the polymers and drug in the blend.

View Article and Find Full Text PDF

Revealing the mechanism underlying the viscosity improvement of rice protein yogurt by the presence of in-situ-produced dextrans.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China. Electronic address:

The in-situ-produced dextrans (DXs) could effectively enhance the viscosity of rice protein (RP) yogurt, but the reason for this improvement has not been elucidated. This study aims to reveal the mechanism underlying the viscosity improvement of RP yogurt by the presence of in-situ DXs. DXs synthesized in RP yogurts under different optimum conditions were purified and fully characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!