The particleboard industry consumes large amounts of raw material, and this type of product consumption has been increasing over the last few years. The research for alternative raw materials becomes interesting, since most of the resources come from planted forests. In addition, the investigation of new raw materials must take into account environmentally correct solutions, such as the use of alternative natural fibers, use of agro-industrial residues, and resins of vegetable origin. The objective of this study was to evaluate the physical properties of panels manufactured by hot pressing using eucalyptus sawdust, chamotte, and polyurethane resin based on castor oil as raw materials. Eight formulations were designed with variations of 0, 5, 10, and 15% of chamotte, and two variations of resin with 10% and 15% of volumetric fraction. Tests of gravimetric density, X-ray densitometry, moisture content, water absorption, thickness swelling, and scanning electron microscopy were carried out. Through the results it can be noticed that the incorporation of chamotte in the manufacture of the panels increased the water absorption and the swelling in thickness, around 100% and the use of 15% of resin decreased, more than 50%, the values of these properties. X-ray densitometry analyzes showed that the addition of chamotte alters the density profile of the panel. In addition, the panels manufactured with 15% resin were classified as P7, the most demanding type on EN 312:2010 standard.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144163 | PMC |
http://dx.doi.org/10.3390/polym15081931 | DOI Listing |
BMC Biotechnol
January 2025
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
Background: In this study, thermophilic pectinase-producing strains were isolated. Among all the isolates, strain No. 4 was identified as Aspergillus fumigatus BT-4 based on its morphology and 18 S rDNA analysis.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.
In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.
View Article and Find Full Text PDFCurr Drug Saf
January 2025
Department of Chemistry, K J Somaiya College of Science and Commerce, Vidyavihar, Mumbai-77, India.
The presence of N-nitrosamine impurities in pharmaceutical products is well known. In 2019, it resulted in drug recall by the Food and Drug Administration (FDA). Soon, several groups identified the presence of many N-nitrosamines (NAs) in various Active Pharmaceutical Ingredients (APIs) and drug formulations worldwide.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China.
Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[]pyridines. The modification of the position-5 of compound was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound .
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!