The fabrication of composite materials is an effective way to improve the performance of a single material and expand its application range. In recent years, graphene-based materials/polymer composite aerogels have become a hot research field for preparing high-performance composites due to their special synergistic effects in mechanical and functional properties. In this paper, the preparation methods, structures, interactions, properties, and applications of graphene-based materials/polymer composite aerogels are discussed, and their development trend is projected. This paper aims to arouse extensive research interests in multidisciplinary fields and provide guidance for the rational design of advanced aerogel materials, which could then encourage efforts to use these new kinds of advanced materials in basic research and commercial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146249 | PMC |
http://dx.doi.org/10.3390/polym15081888 | DOI Listing |
Polymers (Basel)
April 2023
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
The fabrication of composite materials is an effective way to improve the performance of a single material and expand its application range. In recent years, graphene-based materials/polymer composite aerogels have become a hot research field for preparing high-performance composites due to their special synergistic effects in mechanical and functional properties. In this paper, the preparation methods, structures, interactions, properties, and applications of graphene-based materials/polymer composite aerogels are discussed, and their development trend is projected.
View Article and Find Full Text PDFBiosens Bioelectron
March 2017
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China.
Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!