Konjac glucomannan (KGM) is a naturally occurring macromolecular polysaccharide that exhibits remarkable film-forming and gel-forming properties, and a high degree of biocompatibility and biodegradability. The helical structure of KGM is maintained by the acetyl group, which plays a crucial role in preserving its structural integrity. Various degradation methods, including the topological structure, can enhance the stability of KGM and improve its biological activity. Recent research has focused on modifying KGM to enhance its properties, utilizing multi-scale simulation, mechanical experiments, and biosensor research. This review presents a comprehensive overview of the structure and properties of KGM, recent advancements in non-alkali thermally irreversible gel research, and its applications in biomedical materials and related areas of research. Additionally, this review outlines prospects for future KGM research, providing valuable research ideas for follow-up experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145206 | PMC |
http://dx.doi.org/10.3390/polym15081852 | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
The effect of konjac glucomannan (KGM) on lipid absorption is related to the viscosity effect and hepatic lipid synthesis. However, the molecular mechanism of regulation of intestinal lipid absorption by KGM and its correlation with gut microbiota have not been studied. This study explored the effects of KGM and degradation products of KGM (DKGM) on intestinal lipid absorption and output in obese mice and their potential mechanisms.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China. Electronic address:
In this study, the effects of transglutaminase on the structural and physicochemical properties of soy protein isolate/konjac glucomannan complex were investigated. Additionally, the complex was treated with different transglutaminase additions, cross-linking temperatures, and cross-linking pH and compared with a control without transglutaminase to elucidate the effect of transglutaminase on the internal interactions within the complex. The results demonstrated that transglutaminase treatment significantly enhanced the water-holding and oil-binding capacities by 34.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. Electronic address:
A stimuli-responsive drug delivery system is developed for controlled delivery of curcumin (Cur) and chemo-photothermal therapy of breast cancer (BC). Cur is first loaded into mesoporous polydopamine nanoparticles (mPDA NPs) by π-π stacking, and then the Cur loaded mPDA NPs (mPDA NPs@Cur) are encapsulated in the hydrogels prepared through the crosslinking of oxidized konjac glucomannan (oxKGM) and carboxymethyl chitosan (CMCS). Owing to the pH-sensitivity of the hydrogels and the outstanding photothermal conversion capability of mPDA NPs, the release of Cur from the hydrogels can be greatly accelerated in acidic media upon near infrared (NIR) irradiation.
View Article and Find Full Text PDFGels
December 2024
Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China.
Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK. Electronic address:
Biopolymer-based emulsion systems have been used for food preservation. In this study, mung bean protein (MBP) was added to konjac glucomannan (KGM)/curdlan-based camellia oil emulsion (KC-CO) to develop KCM-CO emulsion system. KCM-CO emulsions showed good compatibility and stability during storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!