(1) Background: A newer class of bulk-fill resin-based composite (BF-RBC) materials requires no capping layer (Palfique Bulk flow, PaBF, Tokuyama Dental, Tokyo, Japan). The objective of this study was to assess the flexural strength, microhardness, surface roughness, and color stability of PaBF compared to two BF-RBCs with different consistencies. (2) Methods: PaBF, SDR Flow composite (SDRf: Charlotte, NC, USA) and One Bulk fill (OneBF: 3M, St. Paul, MN, USA) were evaluated for flexural strength with a universal testing machine, surface microhardness using a pyramidal Vickers indenter, and surface roughness using a high-resolution three-dimensional non-contact optical profiler, a and clinical spectrophotometer to measure the color stability of each BF-RBC material. (3) Results: OneBF presented statistically higher flexural strength and microhardness than PaBF or SDRf. Both PaBF and SDRf presented significantly less surface roughness compared with OneBF. Water storage significantly reduced the flexural strength and increased the surface roughness of all tested materials. Only SDRf showed significant color change after water storage. (4) Conclusions: The physico-mechanical properties of PaBF do not support its use without a capping layer in the stress bearing areas. PaBF showed less flexural strength compared with OneBF. Therefore, its use should be limited to a small restoration with minimal occlusal stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144174PMC
http://dx.doi.org/10.3390/polym15081847DOI Listing

Publication Analysis

Top Keywords

flexural strength
20
surface roughness
16
capping layer
8
strength microhardness
8
color stability
8
pabf sdrf
8
compared onebf
8
water storage
8
pabf
7
flexural
5

Similar Publications

Geopolymer concrete (GPC) offers a sustainable alternative by eliminating the need for cement, thereby reducing carbon dioxide emissions. Using durable concrete helps prevent the corrosion of reinforcing bars and reduces spalling caused by chemical attacks. This study investigates the impact of adding 5, 10, and 15% silica fumes (SF) on the mechanical and durability properties of GPC cured at 60 °C for 24 h.

View Article and Find Full Text PDF

A comparative evaluation of commercially available short fiber-reinforced composites.

BMC Oral Health

December 2024

Department of Biomaterials Science and Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland.

Background: Short fiber-reinforced composites (SFRCs) are restorative materials for large cavities claimed to effectively resist crack propagation. This study aimed to compare the mechanical properties and physical characteristics of five commercially available SFRCS (Alert, Fibrafill Flow, Fibrafill Dentin, everX Flow, and everX Posterior) against a conventional particulate-filled composite (PFC, Essentia Universal).

Methods: The following characteristics were evaluated in accordance with ISO standards: flexural strength and modulus and fracture toughness.

View Article and Find Full Text PDF

Very high heat is generated during the polymerization of poly (methyl methacrylate) (PMMA) bone cement, which is used for implant fixation in orthopedic surgery. As such, it has been suggested that irrigating the bone cement layer in the surgical site with a saline solution is a way of cooling the layer. In this study, we aimed to determine the influence of irrigation with a saline solution on the flexural strength and the microstructure of the test specimens of two PMMA bone cement brands: Simplex P and FIX 1.

View Article and Find Full Text PDF

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

3D printing of continuous cotton thread reinforced poly (lactic acid).

Sci Rep

December 2024

Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Guilin University of Aerospace Technology, Guilin, 541004, China.

This paper purposed to prepare poly (lactic acid)/continuous cotton thread (PLA /CCT) filaments by using prepreg method, and investigated the properties of PLA/CCT filament and their 3D printed composites. Firstly, a prepreg device was home-made to immerse CCT with PLA melts. The effects of the dragging speed and tensioning equipment on the quality of PLA/CCT filament was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!