Faba bean ( L. ) is an important grain legume and is widely used as food and feed. It is traditionally used as a spring crop in Central European cropping systems. There is increasing interest in winter faba bean due to a higher yield potential, but limited knowledge of nitrogen (N) yields and nitrogen fixation (N) exists. Therefore, the purpose of this study was to compare N concentrations, N yield of plant fractions, soil mineral N (SMN) and SMN sparing in the soil after harvest, N and N balance of two winter faba bean varieties (Diva and Hiverna) to those of a spring faba bean (Alexia) using two seeding rates (25 versus 50 germinable seeds m) in a two-year field experiment under Pannonian climate conditions in eastern Austria. The winter faba bean varieties had higher N yields and N, not only due to higher biomass yields, but also due to higher N concentrations and a higher percentage of N derived from atmosphere in the biomass. Conversely, the soil mineral N after harvest was lower compared to the spring faba bean. All treatments had a negative N balance due to higher grain N yield than N. Winter faba beans left higher amounts of biologically-fixed N in residues for the subsequent crop, whereas spring faba bean left more SMN. Winter faba bean varieties obtained good results with both seeding rates, whereas the grain yield and the grain N yield of Alexia tended to higher with the higher seeding rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144576 | PMC |
http://dx.doi.org/10.3390/plants12081711 | DOI Listing |
Food Chem
December 2024
Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada. Electronic address:
A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein.
View Article and Find Full Text PDFFood Res Int
January 2025
The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800, Australia. Electronic address:
Hard-to-cook (HTC) beans are characterised by extended cooking times. Although the changes in cell walls limiting hydration in HTC beans are widely investigated, the role of macro-molecules (starch and protein, which constitute >80 % of beans) are almost overlooked. This study investigates the structural changes in starch associated with the HTC quality in faba and adzuki beans stored at contrasting temperature and humidity regimes.
View Article and Find Full Text PDFSci Rep
January 2025
Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, 1 Banacha St., Warsaw, 02-097, Poland.
The study addresses the utilization of food waste by-products from faba bean (Vicia faba L.) pods (FBP) as an alternative feed supplement to promote sustainable piglet growth by reducing antimicrobial use. Objectives include evaluation of FBP in terms of nutritional components (proximate composition, fibres, minerals), phytochemical composition (total phenols, HPLC-MS profiling), and in vitro biological activities.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
Background: Globally, salinity poses a threat to crop productivity by hindering plant growth and development via osmotic stress and ionic cytotoxicity. Plant extracts have lately been employed as exogenous adjuvants to improve endogenous plant defense mechanisms when grown under various environmental stresses, such as salinity. This study investigated the potential of melatonin (Mt; 0, 50, and 100 mM) as an antioxidant and licorice root extract (LRE; 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!