A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative Coexpression Analysis of Indole Synthase and Tryptophan Synthase A Reveals the Independent Production of Auxin via the Cytosolic Free Indole. | LitMetric

Indole synthase (INS), a homologous cytosolic enzyme of the plastidal tryptophan synthase A (TSA), has been reported as the first enzyme in the tryptophan-independent pathway of auxin synthesis. This suggestion was challenged as INS or its free indole product may interact with tryptophan synthase B (TSB) and, therefore, with the tryptophan-dependent pathway. Thus, the main aim of this research was to find out whether INS is involved in the tryptophan-dependent or independent pathway. The gene coexpression approach is widely recognized as an efficient tool to uncover functionally related genes. Coexpression data presented here were supported by both RNAseq and microarray platforms and, hence, considered reliable. Coexpression meta-analyses of Arabidopsis genome was implemented to compare between the coexpression of and with all genes involved in the production of tryptophan via the chorismate pathway. Tryptophan synthase A was found to be coexpressed strongly with , , , as well as . However, was not found to be coexpressed with any target genes suggesting that it may exclusively and independently be involved in the tryptophan-independent pathway. Additionally, annotation of examined genes as ubiquitous or differentially expressed were described and subunits-encoded genes available for the assembly of tryptophan and anthranilate synthase complex were suggested. The most probable TSB subunits expected to interact with TSA is TSB1 then TSB2. Whereas TSB3 is only used under limited hormone conditions to assemble tryptophan synthase complex, putative TSB4 is not expected to be involved in the plastidial synthesis of tryptophan in Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142997PMC
http://dx.doi.org/10.3390/plants12081687DOI Listing

Publication Analysis

Top Keywords

tryptophan synthase
20
synthase
8
indole synthase
8
tryptophan
8
free indole
8
tryptophan-independent pathway
8
synthase complex
8
pathway
5
genes
5
comparative coexpression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!