Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145503 | PMC |
http://dx.doi.org/10.3390/plants12081668 | DOI Listing |
Planta
January 2025
Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie Et Nutritions N, C, S, Esplanade de La Paix CS14032, 14032, Caen Cedex 5, France.
The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
Introduction: Heat stress caused by global warming adversely affects wheat yield through declining most nutritional quality attributes in grains, excluding grain protein content.
Methods: This research investigated the biochemical, physiological, and antioxidant responses of wheat plants under heat stress, focusing on the role of plant growth-promoting bacteria ( sp.).
Microbiol Res
December 2024
International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco. Electronic address:
The plant rhizosphere microbiome plays a crucial role in plant growth and health. Within this microbiome, bacteria dominate, exhibiting traits that benefit plants, such as facilitating nutrient acquisition, fixing nitrogen, controlling pathogens, and promoting root growth. This study focuses on designing synthetic bacterial consortia using key bacterial strains which have been mapped and then isolated from the sorghum rhizosphere microbiome.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, CEP 84030-900, PR, Brazil. Electronic address:
The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!