Effect of NaCl and EDDS on Heavy Metal Accumulation in in Polymetallic Polluted Soil.

Plants (Basel)

Groupe de Recherche en Physiologie Vegetale (GRPV), Earth and Life Institute-Agronomy (ELIA), Universite Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.

Published: April 2023

The ability of plants to accumulate heavy metals is a crucial factor in phytoremediation. This study investigated the effect of NaCl and S,S-ethylenediaminesuccinic acid (EDDS) on heavy metal accumulation in in soil polluted with arsenic, cadmium, lead, and zinc. The addition of NaCl reduced the bioavailability of arsenic and cadmium, while EDDS increased the bioavailability of arsenic and zinc. The toxicity of the polymetallic pollutants inhibited plant growth and reproduction, but NaCl and EDDS had no significant positive effects. NaCl reduced the accumulation of all heavy metals in the roots, except for arsenic. In contrast, EDDS increased the accumulation of all heavy metals. NaCl reduced the accumulation of arsenic in both the main stem (MS) and lateral branch (LB), along with a decrease in cadmium in the leaves of the main stem (LMS) and zinc in the leaves of the lateral branch (LLB). Conversely, EDDS increased the accumulation of all four heavy metals in the LB, along with an increase in arsenic and cadmium in the LMS and LLB. Salinity significantly decreased the bioaccumulation factor (BF) of all four heavy metals, while EDDS significantly increased it. NaCl had different effects on heavy metals in terms of the translocation factor (TFc), increasing it for cadmium and decreasing it for arsenic and lead, with or without EDDS. EDDS reduced the accumulation of all heavy metals, except for zinc, in the presence of NaCl in polluted soil. The polymetallic pollutants also modified the cell wall constituents. NaCl increased the cellulose content in the MS and LB, whereas EDDS had little impact. In conclusion, salinity and EDDS have different effects on heavy metal bioaccumulation in , and this species has the potential to be a candidate for phytoremediation in saline environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146522PMC
http://dx.doi.org/10.3390/plants12081656DOI Listing

Publication Analysis

Top Keywords

heavy metals
28
edds increased
16
accumulation heavy
16
heavy metal
12
arsenic cadmium
12
nacl reduced
12
reduced accumulation
12
heavy
10
edds
10
nacl
9

Similar Publications

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.

View Article and Find Full Text PDF

Background: Platinum chemotherapy (CT) remains the backbone of systemic therapy for patients with small-cell lung cancer (SCLC). The nucleotide excision repair (NER) pathway plays a central role in the repair of the DNA damage exerted by platinum agents. Alteration in this repair mechanism may affect patients' survival.

View Article and Find Full Text PDF

In Bangladesh, ensuring food safety from various hazardous contaminants, including heavy metals in different food items, has become a significant policy concern. This systematic review aimed to summarize the heavy metal contamination of locally produced fruits in Bangladesh and estimate the subsequent health risks of heavy metals upon consumption of reported fruits. A total of 1458 articles were retrieved from PubMed, Google Scholar, and manual Google searching, of which 10 were included in the current review.

View Article and Find Full Text PDF

The environmental xenobiotic aluminum chloride (AlCl) destroys reproduction via free radicals. The present study aimed at evaluating the impact of purple and white eggplant on rat fertility when exposed to AlCl. A total of 36 male albino rats were divided into six groups: a negative control, the second given AlCl (17 mg/kg b.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!