Natural rubber (NR) remains an indispensable raw material with unique properties that is used in the manufacture of a large number of products and the global demand for it is growing every year. The only industrially important source of NR is the tropical tree (Willd. ex A.Juss.) Müll.Arg., thus alternative sources of rubber are required. For the temperate zone, the most suitable source of high quality rubber is the Russian (Kazakh) dandelion L.E. Rodin (TKS). An obstacle to the widespread industrial cultivation of TKS is its high heterozygosity, poor growth energy, and low competitiveness in the field, as well as inbreeding depression. Rapid cultivation of TKS requires the use of modern technologies of marker-assisted and genomic selection, as well as approaches of genetic engineering and genome editing. This review is devoted to describing the progress in the field of molecular genetics, genomics, and genetic engineering of TKS. Sequencing and annotation of the entire TKS genome made it possible to identify a large number of SNPs, which were subsequently used in genotyping. To date, a total of 90 functional genes have been identified that control the rubber synthesis pathway in TKS. The most important of these proteins are part of the rubber transferase complex and are encoded by eight genes for -prenyltransferases (), two genes for -prenyltransferase-like proteins (), one gene for rubber elongation factor (), and nine genes for small rubber particle proteins (). In TKS, genes for enzymes of inulin metabolism have also been identified and genome-wide studies of other gene families are also underway. Comparative transcriptomic and proteomic studies of TKS lines with different accumulations of NR are also being carried out, which help to identify genes and proteins involved in the synthesis, regulation, and accumulation of this natural polymer. A number of authors already use the knowledge gained in the genetic engineering of TKS and the main goal of these works is the rapid transformation of the TKS into an economically viable rubber crop. There are no great successes in this area so far, therefore work on genetic transformation and genome editing of TKS should be continued, considering the recent results of genome-wide studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144037PMC
http://dx.doi.org/10.3390/plants12081621DOI Listing

Publication Analysis

Top Keywords

genetic engineering
16
tks
11
rubber
8
large number
8
cultivation tks
8
genome editing
8
engineering tks
8
genome-wide studies
8
genes
6
genetic
5

Similar Publications

Comparative analysis of regression algorithms for drug response prediction using GDSC dataset.

BMC Res Notes

January 2025

Department of Computer Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea.

Background: Drug response prediction can infer the relationship between an individual's genetic profile and a drug, which can be used to determine the choice of treatment for an individual patient. Prediction of drug response is recently being performed using machine learning technology. However, high-throughput sequencing data produces thousands of features per patient.

View Article and Find Full Text PDF

Growth of microbes in competitive lifestyles promotes increased ARGs in soil microbiota: insights based on genetic traits.

Microbiome

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Integrated metabolomic and transcriptomic analysis of anthocyanin metabolism in wheat pericarp.

BMC Genom Data

January 2025

Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.

Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.

Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!