Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of hydrogel (HG) in regenerative medicine is an emerging field and thus several approaches have been proposed recently to find an appropriate hydrogel system. In this sense, this study developed a novel HG system using collagen, chitosan, and VEGF composites for culturing mesenchymal stem cells (MSCs), and investigated their ability for osteogenic differentiation and mineral deposition. Our results showed that the HG loaded with 100 ng/mL VEGF (HG-100) significantly supported the proliferation of undifferentiated MSCs, the fibrillary filament structure (HE stain), mineralization (alizarin red S and von Kossa stain), alkaline phosphatase, and the osteogenesis of differentiated MSCs compared to other hydrogels (loaded with 25 and 50 ng/mL VEGF) and control (without hydrogel). HG-100 showed a higher VEGF releasing rate from day 3 to day 7 than other HGs, which substantially supports the proliferative and osteogenic properties of HG-100. However, the HGs did not increase the cell growth in differentiated MSCs on days 14 and 21 due to the confluence state (reach stationary phase) and cell loading ability, regardless of the VEGF content. Similarly, the HGs alone did not stimulate the osteogenesis of MSCs; however, they increased the osteogenic ability of MSCs in presence of osteogenic supplements. Accordingly, a fabricated HG with VEGF could be used as an appropriate system to culture stem cells for bone and dental regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143960 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15041297 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!