Pharmacokinetics and Pharmacodynamics of Antibody-Drug Conjugates Administered via Subcutaneous and Intratumoral Routes.

Pharmaceutics

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14241, USA.

Published: April 2023

AI Article Synopsis

  • Different administration routes for antibody-drug conjugates (ADCs) can affect their pharmacokinetics and pharmacodynamics (PK/PD), potentially improving their effectiveness.
  • This study assessed the PK/PD of an ADC (trastuzumab-vc-MMAE) using subcutaneous (SC) and intratumoral (IT) delivery methods in an animal model.
  • Findings show that IT administration improves tumor exposure and anti-tumor activity compared to SC, suggesting IT could match IV efficacy with fewer side effects, while SC administration resulted in local toxicity and reduced effectiveness.

Article Abstract

We hypothesize that different routes of administration may lead to altered pharmacokinetics/pharmacodynamics (PK/PD) behavior of antibody-drug conjugates (ADCs) and may help to improve their therapeutic index. To evaluate this hypothesis, here we performed PK/PD evaluation for an ADC administered via subcutaneous (SC) and intratumoral (IT) routes. Trastuzumab-vc-MMAE was used as the model ADC, and NCI-N87 tumor-bearing xenografts were used as the animal model. The PK of multiple ADC analytes in plasma and tumors, and the in vivo efficacy of ADC, after IV, SC, and IT administration were evaluated. A semi-mechanistic PK/PD model was developed to characterize all the PK/PD data simultaneously. In addition, local toxicity of SC-administered ADC was investigated in immunocompetent and immunodeficient mice. Intratumoral administration was found to significantly increase tumor exposure and anti-tumor activity of ADC. The PK/PD model suggested that the IT route may provide the same efficacy as the IV route at an increased dosing interval and reduced dose level. SC administration of ADC led to local toxicity and reduced efficacy, suggesting difficulty in switching from IV to SC route for some ADCs. As such, this manuscript provides unprecedented insight into the PK/PD behavior of ADCs after IT and SC administration and paves the way for clinical evaluation of these routes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142912PMC
http://dx.doi.org/10.3390/pharmaceutics15041132DOI Listing

Publication Analysis

Top Keywords

antibody-drug conjugates
8
administered subcutaneous
8
subcutaneous intratumoral
8
intratumoral routes
8
pk/pd behavior
8
pk/pd model
8
local toxicity
8
adc
7
pk/pd
6
administration
5

Similar Publications

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

Despite the availability of multiple treatment options for breast cancer, challenges such as adverse events, drug resistance, and disease progression persist for patients. The identification of human epidermal growth factor receptor 2 (HER2) as an oncogenic driver in a subset of breast cancers, alongside the development of HER2-targeted therapies, has significantly improved the prognosis of HER2-amplified breast cancers. However, therapeutic options remain limited for HER2-overexpressing or HER2-negative breast cancers.

View Article and Find Full Text PDF

Innovative payloads for ADCs in cancer treatment: moving beyond the selective delivery of chemotherapy.

Ther Adv Med Oncol

January 2025

Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, Milan 20141, Italy.

Antibody-drug conjugates (ADCs) have emerged as a transformative approach in cancer therapy by enhancing tumor targeting and minimizing systemic toxicity compared to traditional chemotherapy. Initially developed with chemotherapy agents as payloads, ADCs have now incorporated alternative payloads, such as immune-stimulating agents, natural toxins, and radionuclides, to improve therapeutic efficacy and specificity. A significant advancement in ADC technology is the integration of Proteolysis Targeting Chimeras (PROTACs), which enable the precise degradation of cellular targets involved in tumorigenesis.

View Article and Find Full Text PDF

Addressing the unmet need in NSCLC progression with advances in second-line therapeutics.

Explor Target Antitumor Ther

November 2024

Department of Medicine, Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.

Lung cancer is the leading cause of cancer mortality globally, with non-small cell lung cancer (NSCLC) accounting for 85% of cases. Despite advancements in first-line treatments such as immunotherapy and targeted therapies, resistance to these treatments is common, creating a significant unmet need for effective second-line therapies. This review evaluates current and emerging second-line therapeutic options for advanced or metastatic NSCLC, focusing on their efficacy and potential to improve patient outcomes.

View Article and Find Full Text PDF

Glycosite-specific antibody-drug conjugates (gsADCs), which carry cytotoxic payloads at the conserved -glycosylation site, N297, of an IgG, have emerged as a promising ADC format with better therapeutic index. Conjugating the payloads aldehyde-based chemistry is more friendly to IgGs, and has been widely investigated. However, the efficiency of introducing an aldehyde tag at the N297 site is poor due to the complicated procedures required, such as the multiple-enzyme-catalyzed IgG glycoengineering process and the successive oxidation step, which always results in heterogeneous products and poor stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!