The ongoing global emergence of arthropod-borne (arbo) viruses has accelerated research into the interactions of these viruses with the immune systems of their vectors. Only limited information exists on how bunyaviruses, such as Rift Valley fever virus (RVFV), are sensed by mosquito immunity or escape detection. RVFV is a zoonotic phlebovirus (Bunyavirales; ) of veterinary and human public health and economic importance. We have shown that the infection of mosquitoes with RVFV triggers the activation of RNA interference pathways, which moderately restrict viral replication. Here, we aimed to better understand the interactions between RVFV and other vector immune signaling pathways that might influence RVFV replication and transmission. For this, we used the immunocompetent Aag2 cell line as a model. We found that bacteria-induced immune responses restricted RVFV replication. However, virus infection alone did not alter the gene expression levels of immune effectors. Instead, it resulted in the marked enhancement of immune responses to subsequent bacterial stimulation. The gene expression levels of several mosquito immune pattern recognition receptors were altered by RVFV infection, which may contribute to this immune priming. Our findings imply that there is a complex interplay between RVFV and mosquito immunity that could be targeted in disease prevention strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146816 | PMC |
http://dx.doi.org/10.3390/pathogens12040563 | DOI Listing |
Allergy Asthma Proc
January 2025
From the Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, D.C.
Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment.
View Article and Find Full Text PDFCrit Care
December 2024
Medical Innovation Research Division and Fourth Medical Center of Chinese, PLA General Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100853, China.
Background: Megakaryocytes are traditionally recognized as cells responsible for platelet production. However, beyond their role in thrombopoiesis, megakaryocytes also participate in inflammatory responses and regulate immune system functions. Sepsis, characterized by life-threatening organ dysfunction due to a dysregulated response to infection, prominently features coagulopathy, severe inflammation, and immune dysfunction as key pathophysiological aspects.
View Article and Find Full Text PDFJ Transl Med
December 2024
Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.
Background: As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue.
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.
In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!