Cemtirestat, a bifunctional drug acting as an aldose reductase inhibitor with antioxidant ability, is considered a promising candidate for the treatment of diabetic neuropathy. Our study firstly examined the effects of prolonged cemtirestat treatment on bone parameters reflecting bone quality in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Experimental animals were assigned to four groups: non-diabetic rats, non-diabetic rats treated with cemtirestat, diabetic rats, and diabetic rats treated with cemtirestat. Higher levels of plasma glucose, triglycerides, cholesterol, glycated hemoglobin, magnesium, reduced femoral weight and length, bone mineral density and content, parameters characterizing trabecular bone mass and microarchitecture, cortical microarchitecture and geometry, and bone mechanical properties were determined in STZ-induced diabetic versus non-diabetic rats. Treatment with cemtirestat did not affect all aforementioned parameters in non-diabetic animals, suggesting that this drug is safe. In diabetic rats, cemtirestat supplementation reduced plasma triglyceride levels, increased the Haversian canal area and slightly, but insignificantly, improved bone mineral content. Nevertheless, the insufficient effect of cemtirestat treatment on diabetic bone disease does not support its use in the therapy of this complication of type 1 diabetes mellitus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145951PMC
http://dx.doi.org/10.3390/ph16040628DOI Listing

Publication Analysis

Top Keywords

diabetic rats
16
non-diabetic rats
16
bone
9
rats
9
effects prolonged
8
cemtirestat
8
treatment cemtirestat
8
bone parameters
8
parameters reflecting
8
reflecting bone
8

Similar Publications

Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (Lnc), is also downregulated.

View Article and Find Full Text PDF

Although lithium (LIT) therapy is key in managing bipolar disorder long-term, prolonged use significantly contributes to acquired Nephrogenic Diabetes Insipidus (NDI). This study examined whether combining Silymarin (SIL) with Vitamin C (Vit C) enhances protection against lithium-induced nephrotoxicity in rats, comparing their individual antioxidant effects as well. Rats subjected to Li exposure were provided with a standard commercial diet supplemented with 80 mmol LiCl per kilogram for 28 days.

View Article and Find Full Text PDF

Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).

View Article and Find Full Text PDF

Delayed wound closure is a significant hallmark associated with diabetes. A previous study from our laboratory identified decreased levels of Dicer and miRNAs together with altered levels of wound healing genes in the wounded tissues of diabetic rats. Comprehensive regulators of these wound healing genes mapped onto the PRC2 (polycomb repressive complex 2) complex.

View Article and Find Full Text PDF

Background: The search for early and minimally invasive diagnostic approaches to pancreatic cancer (PC) remains an important issue. One of the most promising directions is to find a sensitive key in the metabolic changes during widespread causes of PC, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!