The latest advancements in bone scaffold technology have introduced novel biomaterials that have the ability to generate oxygen when implanted, improving cell viability and tissue maturation. In this paper, we present a new oxygen-generating polylactic acid (PLA)/calcium peroxide (CPO) composite filament that can be used in 3D printing scaffolds. The composite material was prepared using a wet solution mixing method, followed by drying and hot melting extrusion. The concentration of calcium peroxide in the composite varied from 0% to 9%. The prepared filaments were characterized in terms of the presence of calcium peroxide, the generated oxygen release, porosity, and antibacterial activities. Data obtained from scanning electron microscopy and X-ray diffraction showed that the calcium peroxide remained stable in the composite. The maximum calcium and oxygen release was observed in filaments with a 6% calcium peroxide content. In addition, bacterial inhibition was achieved in samples with a calcium peroxide content of 6% or higher. These results indicate that an optimized PLA filament with a 6% calcium peroxide content holds great promise for improving bone generation through bone cell oxygenation and resistance to bacterial infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143609 | PMC |
http://dx.doi.org/10.3390/ph16040627 | DOI Listing |
Carbohydr Polym
March 2025
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:
Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.
View Article and Find Full Text PDFMicroorganisms
December 2024
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Existing studies have demonstrated the positive effects of nano-sized iron oxide on compost maturity, yet the impact of nano-sized iron oxide on phosphorus speciation and bacterial communities during the composting process remains unclear. In this study, pig manure and straw were used as raw materials, with biochar-supported nano-sized iron oxide (BC-FeONPs) as an additive and calcium peroxide (CaO) as a co-agent, to conduct an aerobic composting experiment with pig manure. Four treatments were tested: CK (control), F1 (1% BC-FeONPs), F2 (5% BC-FeONPs), and F3 (5% BC-FeONPs + 5% CaO).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Science and Engineering, Fudan University, Shanghai, PR China.
The outbreak of cyanobacterial blooms poses an increasingly serious ecological challenge. Our previous study found that calcium peroxide (CaO) has a high inhibitory effect on cyanobacteria, along with a practical application potential in cyanobacteria-dominated lakes. In order to explore the sensitivity of aquatic ecosystems to CaO treatment, we conducted this study to elucidate the ecological impact of CaO on Vallisneria natans (V.
View Article and Find Full Text PDFJ Environ Manage
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
In situ gelling, cell-laden hydrogels hold promise for regenerating tissue lesions with irregular shapes located in complex and hard-to-reach anatomical sites. A notable example is the regeneration of neural tissue lost due to cerebral cavitation. However, hypoxia-induced cell necrosis during the vascularization period imposes a significant challenge to the success of this approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!