Neuroprotective drugs to protect the brain against cerebral ischemia and reperfusion (I/R) injury are urgently needed. Mammalian cell-produced recombinant human erythropoietin (rhuEPO) has been demonstrated to have excellent neuroprotective functions in preclinical studies, but its neuroprotective properties could not be consistently translated in clinical trials. The clinical failure of rhuEPO was thought to be mainly due to its erythropoietic activity-associated side effects. To exploit its tissue-protective property, various EPO derivatives with tissue-protective function only have been developed. Among them, asialo-rhuEPO, lacking terminal sialic acid residues, was shown to be neuroprotective but non-erythropoietic. Asialo-rhuEPO can be prepared by enzymatic removal of sialic acid residues from rhuEPO (asialo-rhuEPO) or by expressing human gene in glycoengineered transgenic plants (asialo-rhuEPO). Both types of asialo-rhuEPO, like rhuEPO, displayed excellent neuroprotective effects by regulating multiple cellular pathways in cerebral I/R animal models. In this review, we describe the structure and properties of EPO and asialo-rhuEPO, summarize the progress on neuroprotective studies of asialo-rhuEPO and rhuEPO, discuss potential reasons for the clinical failure of rhuEPO with acute ischemic stroke patients, and advocate future studies needed to develop asialo-rhuEPO as a multimodal neuroprotectant for ischemic stroke treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143832 | PMC |
http://dx.doi.org/10.3390/ph16040610 | DOI Listing |
Transl Stroke Res
January 2025
Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
The role of chromatin biology and epigenetics in disease progression is gaining increasing recognition. Genes that escape X chromosome inactivation (XCI) can impact neuroinflammation through epigenetic mechanisms. Our previous study has suggested that the X escapee genes Kdm6a and Kdm5c are involved in microglial activation after stroke in aged mice.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.
Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.
View Article and Find Full Text PDFNeurol Sci
January 2025
Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia, 42122, Italy.
Introduction: Large artery atherosclerosis is a relevant cause of ischemic stroke. Beyond carotid artery stenosis ≥ 50%, causative in etiological classification of stroke, non-stenosing plaques are an increasingly reported cause of stroke with embolic pattern.
Methods: We are presenting the case of a 56 years old woman presenting with a first symptomatic multifocal ischemic stroke in the right internal carotid artery (ICA) territory on 2018 and a finding of asymptomatic past vascular injury in the same vascular territory on neuroimaging studies.
J Neurol
January 2025
Neurology, Cantonal Hospital of Baden, Baden, Switzerland.
Background: Correct identification of those patients presenting with an acute vestibular syndrome (AVS) or an acute imbalance syndrome (AIS) that have underlying posterior-circulation stroke (PCS) and thus may benefit from revascularization (intravenous thrombolysis (IVT), endovascular therapy (EVT)) is important. Treatment guidelines for AVS/AIS patients are lacking. We reviewed the evidence on acute treatment strategies in AVS/AIS focusing on predictors for IVT/EVT and outcome.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.
Background: Levels of inflammatory components gradually rise in tissues and blood as we age. This "inflammageing" process is often debilitating and even fatal. Cognitive impairment is one example of inflammageing's incapacitating nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!