Efficient simulation methods for taking nonlocal effects in nanostructures into account have been developed, but they are usually computationally expensive or provide little insight into underlying physics. A multipolar expansion approach, among others, holds promise to properly describe electromagnetic interactions in complex nanosystems. Conventionally, the electric dipole dominates in plasmonic nanostructures, while higher order multipoles, especially the magnetic dipole, electric quadrupole, magnetic quadrupole, and electric octopole, can be responsible for many optical phenomena. The higher order multipoles not only result in specific optical resonances, but they are also involved in the cross-multipole coupling, thus giving rise to new effects. In this work, we introduce a simple yet accurate simulation modeling technique, based on the transfer-matrix method, to compute higher-order nonlocal corrections to the effective permittivity of 1d plasmonic periodic nanostructures. In particular, we show how to specify the material parameters and the arrangement of the nanolayers in order to maximize or minimize various nonlocal corrections. The obtained results provide a framework for guiding and interpreting experiments, as well as for designing metamaterials with desired dielectric and optical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144308 | PMC |
http://dx.doi.org/10.3390/nano13081395 | DOI Listing |
ACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Rice University Houston Texas 77005 USA
We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.
View Article and Find Full Text PDFChem Asian J
January 2025
Universidad Austral de Chile, Instituto de Ciencias Químicas, CHILE.
Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.
View Article and Find Full Text PDFACS Nano
January 2025
Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.
Circular differential scattering (CDS) spectroscopy has been developed as a powerful method for the characterization of the optical activity of individual plasmonic nanostructures and their complexes with chiral molecules. However, standard measurement setups often result in artifacts that have long raised concerns on the interpretation of spectral data. In fact, the detection limit of CDS setups is constrained by the high level of artifacts, to ±10%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!