It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients ( = 16) and healthy controls ( = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, -value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, -value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141340PMC
http://dx.doi.org/10.3390/molecules28083488DOI Listing

Publication Analysis

Top Keywords

volatile metabolites
12
gastric cancer
12
cancer patients
12
healthy controls
12
fecal microbiota
12
gut microbiota
8
exhaled breath
8
multivariate statistical
8
patients healthy
8
breath vocs
8

Similar Publications

The purpose of this study was to evaluate the impact of different additives in fermented indigo waste on feed availability, rumen fermentation patterns, blood chemistry, and hematology in beef cattle. Four male crossbred beef cattle with a body weight (BW) of 230 ± 14 kg and 25 months of age were used in a 4 × 4 Latin square design. The indigo waste was ensiled without additive (CON) and with calcium hydroxide (CH), molasses (M), or cellulase (C).

View Article and Find Full Text PDF

Chemical Diversity of Mediterranean Seagrasses Volatilome.

Metabolites

December 2024

CNRS, Aix-Marseille University, Avignon University, IRD, UMR 7263 IMBE, 13397 Marseille, France.

Background/objectives: Biogenic volatile organic compounds (BVOCs), extensively studied in terrestrial plants with global emissions around 1 PgC yr, are also produced by marine organisms. However, benthic species, especially seagrasses, are understudied despite their global distribution (177,000-600,000 km). This study aims to examine BVOC emissions from key Mediterranean seagrass species (, , , and ) in marine and coastal lagoon environments.

View Article and Find Full Text PDF

Volatile compounds have a deep influence on the quality and application of the medicinal herb ; however, little is known about the effect of UV-B radiation on volatile metabolites. We herein investigated the effects of UV-B exposure on the volatile compounds and transcriptome of to assess the potential for improving its quality and medicinal characteristics. Out of 733 volatiles obtained, a total of 133 differentially expressed metabolites (DEMs) were identified by metabolome analysis.

View Article and Find Full Text PDF

: Essential oils (EOs) have been exploited by humans for centuries, but many sources remain poorly investigated, mainly due to the low yields associated with conventional extraction. Recently, new techniques have been developed, like solvent-free microwave extraction (SFME), able to enhance efficiency and sustainability. The use of L.

View Article and Find Full Text PDF

The interaction between plants and microorganisms plays a major role in plant growth promotion and disease management. While most microorganisms directly influence plant health, some indirectly support growth through pest and disease suppression. Endophytic entomopathogenic fungi are diverse, easily localized, and have long-lasting effects on insect pests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!