The characteristics of high polarity and susceptibility to oxidation in phenolic glycosides increase the difficulty of their separation from natural products. In the present study, two new phenolic glycosides with similar structures were isolated from Hance using a combination of multistep CC and high-speed countercurrent chromatography. Preliminary separation of the target fractions was carried out by Sephadex LH-20 chromatography (100-0% EtOH in HO). High-speed countercurrent chromatography with an optimized solvent system of N-Hexane/Ethyl acetate/Methanol/Water (1:6:3:4, ///) with a satisfactory stationary phase retention and separation factor was used for further separation and purification of the phenolic glycosides. Consequently, two new phenolic glycoside compounds were obtained with purities of 93.0% and 95.7%. 1D-NMR and 2D-NMR spectroscopy, mass spectrometry, and optical rotation were employed to identify their structures, which were assigned as chinensin D and chinensin E. The antioxidant and α-glucosidase inhibitory activities of these two compounds were evaluated using a DPPH antioxidant assay and a α-glucosidase inhibitory assay. Both compounds showed good antioxidant activity with IC values of 54.5 ± 0.82 µg/mL and 52.5 ± 0.47 µg/mL. The α-glucosidase inhibitory activity of the compounds was poor. The successful isolation and structure identification of the two new compounds provides materials not only for a systematic isolation method of phenolic glycosides with similar structures, but also for the screening of antioxidants and enzyme inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143513 | PMC |
http://dx.doi.org/10.3390/molecules28083331 | DOI Listing |
Plants (Basel)
January 2025
Faculty of Natural Sciences, Vytautas Magnus University, Universiteto Str. 10, LT-53361 Akademija, Lithuania.
This study compared the effects of seed treatment with low-pressure cold plasma (CP) and atmospheric dielectric barrier discharge (DBD) plasma on morpho-biochemical traits in Bertoni plants cultivated by two methods: in soil and aeroponics. We investigated the impact of the treatments on the germination, plant growth, and content of secondary metabolites, namely steviol glycosides (SGs), rebaudioside A (RebA), and stevioside (Stev), as well as phenolic compounds and flavonoids. Seeds were treated for 2, 5, and 7 min with CP or DBD and 5 min with vacuum six days before sowing.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmaceutical Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany.
L. is known in Europe for its cardioactivity-also in interrelation with known risk factors of the metabolic syndrome-just as Houtt. in East Asia; however, up to now, no active constituents could be identified.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38 Bratislava, Slovakia.
Phenylethanoid glycosides (PhGs) are widely occurring secondary metabolites of medicinal plants with interesting biological activities such as antioxidant, anti-inflammatory, neuroprotective, antiviral, hepatoprotective, immunomodulatory, etc. They are characterized by a structural core formed by a phenethyl alcohol, usually tyrosol or hydroxytyrosol, attached to β-D-glucopyranose via a glycosidic bond. This core is usually further decorated by attached phenolic acids or another saccharide.
View Article and Find Full Text PDFMolecules
January 2025
Department of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland.
In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Atopic dermatitis (AD) or eczema is an important inflammatory chronic skin disease that brings many complications in its management and treatment. Although several chemical agents are used for treatment, the search for better anti-inflammatory and antibacterial agents of plant origin has been ongoing, since natural compounds, it is commonly believed, are less dangerous than synthetic ones. Therefore, the present study explored a medicinal plant- (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!