Anaerobic waste processing contributes to the development of the bioenergy sector and solves environmental problems. To date, many technologies have been developed for increasing the rate of the anaerobic digestion process and yield of methane. However, new technological advancements are required to eliminate biogas production inefficiencies. The performance of anaerobic digesters can be improved by adding conductive materials. In this study, the effects of the separate and shared use of magnetite nanoparticles and carbon nanotubes in anaerobic digesters converting high-nitrogen-containing waste, chicken manure, were investigated. The tested nanomaterials accelerated the methane production and increased the decomposition of products from the acidogenesis and acetogenesis stages. The combined use of magnetite nanoparticles and carbon nanotubes gave better results compared to using them alone or without them. Members of the bacterial classes , , and were detected at higher levels in the anaerobic digesters, but in different proportions depending on the experiment. Representatives of the genera , , and were mainly detected within the methanogenic communities in the anaerobic digesters. The present study provides new data for supporting the anaerobic treatment of substrates with a high content of inhibitory compounds, such as chicken wastes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141571 | PMC |
http://dx.doi.org/10.3390/microorganisms11040938 | DOI Listing |
Toxics
December 2024
School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
Sewage sludge is recognized as both a source and a reservoir for antibiotic resistance genes (ARGs). Within an anaerobic digestion (AD) system, the presence of microplastics (MPs) has been observed to potentially facilitate the proliferation of these ARGs. Understanding the influence of MPs on microbial behavior and horizontal gene transfer (HGT) within the AD system is crucial for effectively managing the dissemination of ARGs in the environment.
View Article and Find Full Text PDFMicroorganisms
November 2024
NP3, Nutrition, PathoPhysiology and Pharmacology Unit, Oniris VetAgro Bio, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering, La Chantrerie, CEDEX 03, 44307 Nantes, France.
To investigate the role of the intestinal bacterial microbiota in the pathogenesis of calcium oxalate nephrolithiasis in cats, a condition characterized by the formation of kidney stones, it is desirable to identify a sample collection method that accurately reflects the microbiota's composition. The objective of this study was to evaluate the impact of fecal sample collection methods on the intestinal microbiota composition in two cat populations: healthy cats and kidney stone-diseased cats. The study included eighteen cats from the same colony, comprising nine healthy cats and nine cats with spontaneously occurring presumed calcium oxalate kidney stones.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands.
Managing dairy excreta as slurry can result in significant emissions of ammonia (NH) and greenhouse gases (GHGs) during storage and thereafter. Additionally, slurry often has an imbalanced nitrogen (N) to phosphorus (P) ratio for crop fertilization. While various treatments exist to address emissions and nutrient imbalances, each has trade-offs that can result in pollution swapping.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China. Electronic address:
Understanding the performance and microbial succession in nitrogen removal using fermentation liquid as carbon source can provide a practical basis for treating low C/N ratio wastewater. In this study, three typical fermentation liquids of food waste (FW) enriched with lactic acid (LA), propionic acid (PA), and butyric acid (BA) were added to high ammonia and high salt (HAHS) wastewater treatment process. Results showed that effluent TN decreased from 50 mg/L to around 15 mg/L with the influent concentration around 1000 mg/L after adding fermentation liquid enriched with LA and PA.
View Article and Find Full Text PDFChemosphere
January 2025
BioEngine Research team on green process engineering and biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec (Québec), Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:
The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!