Single-Stranded DNA-Binding Proteins Mediate DSB Repair and Effectively Improve CRISPR/Cas9 Genome Editing in and .

Microorganisms

College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.

Published: March 2023

Single-stranded DNA-binding proteins (SSBs) are essential for all living organisms. Whether SSBs can repair DNA double-strand breaks (DSBs) and improve the efficiency of CRISPR/Cas9-mediated genome editing has not been determined. Here, based on a pCas/pTargetF system, we constructed pCas-SSB and pCas-T4L by replacing the λ-Red recombinases with SSB and phage T4 DNA ligase in pCas, respectively. Inactivation of the gene with homologous donor dsDNA increased the gene editing efficiency of pCas-SSB/pTargetF by 21.4% compared to pCas/pTargetF. Inactivation of the gene via NHEJ increased the gene editing efficiency of pCas-SSB/pTargetF by 33.2% compared to pCas-T4L/pTargetF. Furthermore, the gene-editing efficiency of pCas-SSB/pTargetF in (Δ, Δ, Δ) with or without donor dsDNA did not differ. Additionally, pCas-SSB/pTargetF with donor dsDNA successfully deleted the gene in sp. UW4. These results demonstrate that SSB repairs DSBs caused by CRISPR/Cas9 and effectively improves CRISPR/Cas9 genome editing in and .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143710PMC
http://dx.doi.org/10.3390/microorganisms11040850DOI Listing

Publication Analysis

Top Keywords

genome editing
12
donor dsdna
12
efficiency pcas-ssb/ptargetf
12
single-stranded dna-binding
8
dna-binding proteins
8
crispr/cas9 genome
8
inactivation gene
8
increased gene
8
gene editing
8
editing efficiency
8

Similar Publications

Knockout of a testis-specific gene cluster impairs male fertility in the fall armyworm, Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.

Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

Oil palm () yield is impacted by abiotic stresses, leading to significant economic losses. To understand the core abiotic stress transcriptome (CAST) of oil palm, we performed RNA-Seq analyses of oil palm leaves subjected to drought, salinity, waterlogging, heat, and cold stresses. A total of 19,834 differentially expressed genes (DEGs) were identified.

View Article and Find Full Text PDF

Biallelic pathogenic variants in the nebulin ( ) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in . Previously, a mouse model of was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in transcript expression that is not observed in exon 55 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!