Rapid and robust detection assays for Enteritidis (SE) in shell eggs are essential to enable a quick testing turnaround time (TAT) at the earliest checkpoint and to ensure effective food safety control. Real-time polymerase chain reaction (qPCR) assays provide a workaround for the protracted lead times associated with conventional diagnostic testing. However, DNA-based analysis cannot reliably discriminate between signals from viable and dead bacteria. We developed a strategy based on an SE qPCR assay that can be integrated into system testing to accelerate the detection of viable SE in egg-enriched cultures and verify the yielded SE isolates. The specificity of the assay was evaluated against 89 strains, and SE was accurately identified in every instance. To define the indicator for a viable bacteria readout, viable or heat-inactivated SE were spiked into shell egg contents to generate post-enriched, artificially contaminated cultures to establish the quantification cycle (Cq) for viable SE. Our study has demonstrated that this technique could potentially be applied to accurately identify viable SE during the screening stage of naturally contaminated shell eggs following enrichment to provide an early alert, and that it consistently identified the serotypes of SE isolates in a shorter time than conventional testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143610PMC
http://dx.doi.org/10.3390/microorganisms11040844DOI Listing

Publication Analysis

Top Keywords

shell eggs
12
detection viable
8
enteritidis shell
8
viable
7
real-time pcr
4
pcr approach
4
approach rapid
4
rapid detection
4
viable enteritidis
4
shell
4

Similar Publications

Background: The aim of the present study was to assess the egg quality, food safety, and hygiene practices in egg production among commercial and non-commercial farms.

Methods: A total of six, each commercial and non-commercial farm, were randomly selected form Barwala district, Panchkula, Haryana, for this study in 2019. A detailed interview on hygiene practices of farm workers was conducted.

View Article and Find Full Text PDF

TMT-Based quantitative proteomic analysis reveals age-related changes in eggshell matrix proteins and their correlation with eggshell quality in Xinyang blue-shelled laying hens.

Poult Sci

December 2024

Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China. Electronic address:

The decline in eggshell quality with increasing hen age may be related to changes in ultrastructure and chemical composition, with matrix proteins playing key roles in these changes. However, research on blue-shelled eggs remains limited. This study investigated the effects of hen age (35, 55, 75, and 85 weeks) on the physical, mechanical, and chemical properties of eggshells in the Xinyang blue-shelled laying hens, as well as their ultrastructural and nanostructural characteristics.

View Article and Find Full Text PDF

Plant-based nano-insecticides like provide eco-friendly pest control with low resistance risk. This study aimed to evaluate the insecticidal activity of the FeO @Carbon nanoformulation of extract with a carbon shell and pure extract against (eggs and larvae), a significant potato pest in Iran. A modified solvothermal method produced highly water-dispersible magnetite (FeO) particles, with citrate as a stabilising agent.

View Article and Find Full Text PDF

Finding effective ways to monitor laying hen welfare is challenging as UK flock sizes can reach 16,000 birds. Eggs provide potential for welfare monitoring, as they are a daily output with previous evidence of links to stress. We explored the associations between stressors and eggs using two complementary studies.

View Article and Find Full Text PDF

Thermostable conformational transition unfavorable to the foaming stability of ovalbumin: Emphasizing structure and function relationship.

Int J Biol Macromol

December 2024

National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China. Electronic address:

Storage of shell eggs converts natural ovalbumin (N-OVA) into its more thermostable forms (S-OVA). This conversion may be associated with deterioration in the foaming properties of the stored shell egg. Thus, the foaming behavior of N-OVA and S-OVA, especially their performance at different pH conditions, was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!