How Central Carbon Metabolites of Mexican Mint () Plants Are Impacted under Different Watering Regimes.

Metabolites

Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.

Published: April 2023

AI Article Synopsis

  • Plants have a unique ability to adapt their metabolism to changes in water levels, and a study examined how Mexican mint responds to different watering conditions, including regular watering, drought, and flooding.
  • The research identified 68 key metabolites in central carbon metabolism (CCM) that were significantly affected by water stress, with specific increases in metabolites related to the Calvin cycle, glycolysis, TCA cycle, and nucleotide biosynthesis depending on the water treatment.
  • Findings showed strong correlations between metabolites from different pathways, indicating complex interactions, and the study suggests that future research will explore the genes and proteins involved in these metabolic changes.

Article Abstract

Plants are sessile, and their ability to reprogram their metabolism to adapt to fluctuations in soil water level is crucial but not clearly understood. A study was performed to determine alterations in intermediate metabolites involved in central carbon metabolism (CCM) following exposure of Mexican mint () to varying watering regimes. The water treatments were regular watering (RW), drought (DR), flooding (FL), and resumption of regular watering after flooding (DHFL) or after drought (RH). Leaf cluster formation and leaf greening were swift following the resumption of regular watering. A total of 68 key metabolites from the CCM routes were found to be significantly ( < 0.01) impacted by water stress. Calvin cycle metabolites in FL plants, glycolytic metabolites in DR plants, total tricarboxylic acid (TCA) cycle metabolites in DR and DHFL plants, and nucleotide biosynthetic molecules in FL and RH plants were significantly ( < 0.05) increased. Pentose phosphate pathway (PPP) metabolites were equally high in all the plants except DR plants. Total Calvin cycle metabolites had a significantly ( < 0.001) strong positive association with TCA cycle (r = 0.81) and PPP (r = 0.75) metabolites. Total PPP metabolites had a moderately positive association with total TCA cycle metabolites (r = 0.68; < 0.01) and a negative correlation with total glycolytic metabolites (r = -0.70; < 0.005). In conclusion, the metabolic alterations of Mexican mint plants under different watering regimes were revealed. Future studies will use transcriptomic and proteomic approaches to identify genes and proteins that regulate the CCM route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141017PMC
http://dx.doi.org/10.3390/metabo13040539DOI Listing

Publication Analysis

Top Keywords

cycle metabolites
16
metabolites
12
mexican mint
12
watering regimes
12
regular watering
12
tca cycle
12
plants
9
central carbon
8
mint plants
8
resumption regular
8

Similar Publications

Background: Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecular subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process and reduce the effectiveness of therapy.

View Article and Find Full Text PDF

Stress signaling, response, and adaptive mechanisms in submerged macrophytes under PFASs and warming exposure.

Environ Pollut

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.

View Article and Find Full Text PDF

Introduction: Heat stress caused by global warming adversely affects wheat yield through declining most nutritional quality attributes in grains, excluding grain protein content.

Methods: This research investigated the biochemical, physiological, and antioxidant responses of wheat plants under heat stress, focusing on the role of plant growth-promoting bacteria ( sp.).

View Article and Find Full Text PDF

Background/aim: Melanoma arises from the uncontrolled multiplication of melanocytes, and poses an escalating global health concern. Despite the importance of early detection and surgical removal for effective treatment, metastatic melanoma poses treatment challenges, with limited options. Among optional therapies, including chemotherapy and immunotherapy, all-trans retinoic acid (ATRA), a natural metabolite of vitamin A, has shown promise in treating melanoma by inducing differentiation, apoptosis, growth arrest, and immune modulation in melanoma cells.

View Article and Find Full Text PDF

The cell-free supernatant of (LCFS) is considered a potential natural antimicrobial agent due to its outstanding antimicrobial activity. This study demonstrated that the cell-free supernatant of SHY96 (LCFS96) effectively inhibits the growth and biofilm formation of CMCC(B)54002 (_02) by reducing cell metabolic activity and damaging cell structure. Metabolomic analysis revealed that LCFS96 significantly altered 450 intracellular metabolites, affecting key metabolic pathways including linoleic acid metabolism, pyrimidine metabolism, purine metabolism, pantothenic acid and CoA biosynthesis, and the TCA cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!