In this study, the impact of pH on the production of ZnO nanostructured thin films using chemical bath deposition was investigated for the purpose of enhancing the efficiency of solar cells. The ZnO films were directly deposited onto glass substrates at various pH levels during the synthesis process. The results indicate that the crystallinity and overall quality of the material were not affected by the pH solution, as observed through X-ray diffraction patterns. However, scanning electron microscopy revealed that surface morphology improved with increasing pH values, leading to changes in the size of the nanoflowers between pH 9 and 11 values. Furthermore, the ZnO nanostructured thin films synthesized at pH levels of 9, 10, and 11 were utilized in the fabrication of dye-sensitized solar cells. The ZnO films synthesized at pH 11 exhibited superior characteristics in short-circuit current density and open-circuit photo-voltage compared with those produced at lower pH values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140919 | PMC |
http://dx.doi.org/10.3390/ma16083275 | DOI Listing |
Sci Rep
January 2025
Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.
View Article and Find Full Text PDFSci Rep
January 2025
Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
ACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFChemphyschem
January 2025
Friedrich-Schiller-University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 7743, Jena, GERMANY.
The design and development of particulate photocatalysts has been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different mass ratio of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!