Microstructural, Mechanical, and Tribological Performances of Composites Prepared via Melt Compounding of Polyamide 6, Basalt Fibers, and Styrene-Ethylene-Butylene-Styrene Copolymer.

Materials (Basel)

Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.

Published: April 2023

Basalt fibers (BFs) are environmentally friendly materials characterized by high strength and good wear resistance, and thus are popular candidates for reinforcing polymers. Herein, polyamide 6 (PA 6), BFs, and the styrene-ethylene-butylene-styrene (SEBS) copolymer were melt compounded sequentially to prepare fiber-reinforced PA 6-based composites. The results showed improved mechanical and tribological performances via the incorporation of BFs and SEBS into PA 6. Compared to neat PA 6, an average 83% increase in notched impact strength was achieved for the PA 6/SEBS/BF composites, which is mainly due to the good miscibility between SEBS and PA 6. The tensile strength of the composites, however, was only increased moderately, since the weak interfacial adhesion was not sufficiently efficient to transfer the load from the PA 6 matrix to the BFs. Interestingly, the wear rates of both the PA 6/SEBS blend and the PA 6/SEBS/BF composites were obviously lower than those of the neat PA 6. The PA 6/SEBS/BF composite with 10 wt.% of the BFs exhibited the lowest wear rate of 2.7 × 10 mm/N·m, which was decreased by 95% compared to that of the neat PA 6. The facilitation of forming tribo-film with SEBS and the naturally good wear resistance of the BFs were responsible for the largely decreased wear rate. Moreover, the incorporation of SEBS and BFs into the PA 6 matrix transformed the wear mechanism from adhesive wear to abrasive wear.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147082PMC
http://dx.doi.org/10.3390/ma16083237DOI Listing

Publication Analysis

Top Keywords

mechanical tribological
8
tribological performances
8
basalt fibers
8
wear
8
good wear
8
wear resistance
8
compared neat
8
6/sebs/bf composites
8
wear rate
8
bfs
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!