Role of 5 wt.% Mg Alloying in Al on Corrosion Characteristics of Al-Mg Coating Deposited by Plasma Arc Thermal Spray Process.

Materials (Basel)

Innovative Durable Building and Infrastructure Research Center, Center for Creative Convergence Education, Hanyang University (ERICA Campus), 1271 Sa-3-dong, Sangnok-gu, Ansan 15588, Republic of Korea.

Published: April 2023

The corrosion of steel structures in coastal areas is a major issue. Therefore, in the present study, the protection against the corrosion of structural steel is carried out by depositing 100 μm thick Al and Al-5 Mg coatings using a plasma arc thermal spray process, immersing them in 3.5 wt.% NaCl solution for 41 days (d). To deposit such metals, one of the best known processes, arc thermal spray, is frequently used, but this process has severe defects and porosity. Thus, to minimize the porosity and defects of arc thermal spray, a plasma arc thermal spray process is developed. In this process, we used normal gas to create plasma instead of argon (Ar) and nitrogen (N) with hydrogen (H) and helium (He). Al-5 Mg alloy coating exhibited uniform and dense morphology, where it reduced more than four times the porosity compared to Al, where Mg fills the voids of the coating, resulting in greater bond adhesion and hydrophobicity. The open circuit potential (OCP) of both coatings exhibited electropositive values due to the formation of native oxide in Al, while in the case of Al-5 Mg, the coating is dense and uniform. However, after 1 d of immersion, both coatings showed activation in OCP, owing to the dissolution of splat particles from the corner where the sharp edges are present in the Al coating, while Mg preferentially dissolved in the Al-5 Mg coating and made galvanic cells. Mg is galvanically more active than Al in the Al-5 Mg coating. Due to the capacity of the corrosion products to cover the pores and defects, both coatings stabilized the OCP after 13 d of immersion. The total impedance of the Al-5 Mg coating is gradually increased and is higher than the Al, which can be attributed to the uniform and dense coating morphology where Mg dissolves and agglomerates to form globular corrosion products and deposit over the surface, thereby causing barrier protection. The defect bearing corrosion products on Al coating led to the cause having a higher corrosion rate than the Al-5 Mg coating. A total of 5 wt.% mg in the Al coating improved the corrosion rate by a rate of 1.6 times compared to the pure Al in the 3.5 wt.% NaCl solution after 41 d of immersion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10142962PMC
http://dx.doi.org/10.3390/ma16083088DOI Listing

Publication Analysis

Top Keywords

arc thermal
20
thermal spray
20
al-5 coating
20
coating
12
plasma arc
12
spray process
12
corrosion products
12
corrosion
8
wt% nacl
8
nacl solution
8

Similar Publications

Adaptive Radiative Thermal Management Using Transparent, Flexible Ag Nanowire Networks.

ACS Appl Mater Interfaces

January 2025

ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.

Effective heat management is critical for improving energy efficiency and minimizing environmental impact. Passive radiative heat management systems rely on specific materials and design configurations to naturally modulate temperature, enhance system reliability, and decrease operational costs by modulating infrared light. However, their static nature proves insufficient in dynamic settings experiencing significant temperature fluctuations.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

This study investigates the development of a novel CO-foamed viscoelastic gel-based fracturing fluid to address the challenges of high-temperature formations. The influence of various parameters, including surfactant type and concentration, gas fraction, shear rate, water salinity, temperature, and pressure, on foam viscosity was systematically explored. Rheological experiments were conducted using a high-pressure/high-temperature (HPHT) rheometer at 150 °C and pressures ranging from 6.

View Article and Find Full Text PDF

Unlabelled: Thermal spray, in general, is a process that involves forcing a melted substance, such as metal or ceramic in the form of wire or powder, onto the surface of a targeted object to enhance its desired surface properties. In this paper, the melted substance is metal wire generated by an electric arc and forcibly coated on a rotary iron substrate using compressed air. This thermal process is referred to as double-wire arc thermal spray.

View Article and Find Full Text PDF

AC Plasmas Directly Excited in Liquid-Phase Hydrocarbons for H and Unsaturated C Hydrocarbon Production.

J Am Chem Soc

December 2024

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.

AC plasmas directly excited within liquid hydrocarbons were investigated for the production of hydrogen and unsaturated C hydrocarbon in a recirculating liquid "jet" flow configuration. Arc discharges were excited at two different frequencies (60 Hz and 17.3 kHz) in C-C hydrocarbons (hexane, cyclohexane, benzene, toluene, and xylene) to produce H, CH, CH, and CH, along with liquid and solid carbon byproducts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!