To determine and compare the measurement uncertainty of different geological-geotechnical testing methods, numerous test locations were selected in a hard rock quarry. Measurements were carried out along two vertical measurement lines perpendicular to the mining levels of an existing exploration. Along these lines, the rock quality basically varies due to weathering (decreasing influence with increasing distance from the original ground surface), but also due to the influence of the geological-tectonic conditions on site. The mining conditions (blasting) are identical over the considered area. The rock quality was examined as follows: as field tests, the rock compressive strength was determined by means of point load test and rebound hammer, as laboratory method the Los Angeles test (standard laboratory test for the determination of the mechanical rock quality) was used to identify the impact abrasion resistance. The statistical evaluation and comparison of the results allowed conclusions to be drawn about the contribution of the individual test methods to the measurement uncertainty whereas, in practice, a priori information can be applied complementarily. It shows that the influence on the combined measurement uncertainty u of the different methods due to the geological variability in horizontal direction reaches values between 17 and 32%, whereby the rebound hammer method shows the highest values. However, the highest influences on the measurement uncertainties are a result of the vertical direction due to weathering phenomena with percentages of 55 to 70%. For the point load test, the vertical direction shows the highest significance with an influence of approximately 70%. This leads to the conclusion that a higher weathering degree of the rock mass shows an increasing effect on the measurement uncertainty which needs to be considered using a priori information in measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10140889PMC
http://dx.doi.org/10.3390/ma16083045DOI Listing

Publication Analysis

Top Keywords

measurement uncertainty
20
rock quality
12
point load
8
load test
8
rebound hammer
8
vertical direction
8
rock
7
measurement
6
test
6
influence
5

Similar Publications

Declines in anthropogenic mercury emissions in the Global North and China offset by the Global South.

Nat Commun

January 2025

Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Human activities have emitted substantial mercury into the atmosphere, significantly impacting ecosystems and human health worldwide. Currently, consistent methodologies to evaluate long-term mercury emissions across countries and industries are scant, hindering efforts to prioritize emission controls. Here, we develop a high-spatiotemporal-resolution dataset to comprehensively analyze global anthropogenic mercury emission patterns.

View Article and Find Full Text PDF

Multithermal fluid (MTF) component ratios and injection parameters are critical inputs in offshore heavy oil development, such as injection adjustment and monitoring, productivity prediction, and generator combustion process optimization. We implement simultaneous in situ diagnostics of two emblematic injection parameters, the gas-water ratio (GWR) and noncondensable gases proportion (NCGP), in a pilot-scale environment. A system-level integration of a novel laser absorption spectroscopy multigas sensor system based on integrating stray radiation suppression and a circular cell-enhanced strategy is proposed.

View Article and Find Full Text PDF

Risk calculators based on statistical and/or mechanistic models have flourished and are increasingly available for a variety of diseases. However, in the day-to-day practice, their usage may be hampered by missing input variables. Certain measurements needed to calculate disease risk may be difficult to acquire, e.

View Article and Find Full Text PDF

As a key life-history trait, growth rates are often used to measure individual performance and to inform parameters in demographic models. Furthermore, intraspecific trait variation generates diversity in nature. Therefore, partitioning out and understanding drivers of spatiotemporal variation in growth rate is of fundamental interest in ecology and evolution.

View Article and Find Full Text PDF

Lifetime Risks for Lung Cancer due to Occupational Radon Exposure: A Systematic Analysis of Estimation Components.

Radiat Res

January 2025

Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.

Lifetime risk estimates play a key role in many areas of radiation research. Here, the focus is on the lifetime excess absolute risk (LEAR) for dying from lung cancer due to occupational radon exposure based on uranium miners cohort studies. The major components in estimating LEAR were systematically varied to investigate the variability and uncertainties of results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!