Considering that a jointed rock mass in a cold area is often affected by periodic freeze-thaw cycles and shear failure, definitions for the mesoscopic and macroscopic damage to a jointed rock mass under the coupling of freeze-thaw and shear are proposed, and the damage mechanism is verified according to experimental results. The results show that: (1) the jointed rock specimens increase macro-joints and meso-defects, the mechanical properties deteriorate significantly under freeze-thaw cycles, and the damage degree becomes more and more significant with the increases in freeze-thaw cycles and joint persistency. (2) When the number of freeze-thaw cycles is constant, the total damage variable value gradually increases with the increase in joint persistency. The damage variable difference in specimens with different persistency is distinct, which is gradually reduced in the later cycles, indicating a weakening influence of persistency on the total damage variable. (3) The shear resistance of non-persistent jointed rock mass in a cold area is determined by the coupling effect of meso-damage and frost heaving macro-damage. The coupling damage variable can accurately describe the damage variation law of jointed rock mass under freeze-thaw cycles and shear load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10145744PMC
http://dx.doi.org/10.3390/ma16083041DOI Listing

Publication Analysis

Top Keywords

jointed rock
24
rock mass
20
freeze-thaw cycles
20
damage variable
16
non-persistent jointed
8
mass coupling
8
coupling freeze-thaw
8
freeze-thaw shear
8
mass cold
8
cold area
8

Similar Publications

Study on uniaxial compression mechanical properties of 3D printed columnar joint test blocks.

Sci Rep

December 2024

College of Civil Engineering and Transportation, Hohai University, Nanjing, 210098, China.

The columnar joint skeleton of 3D printed Acrylonitrile Butadiene Styrene (ABS) material, the skeleton of cement mortar and ultraviolet aging treatment are combined to pour the columnar joint rock mass (CJRM) test block. The strength, deformation, energy and failure modes of the specimens with different dip angles were analyzed by uniaxial compression test. The influence of joint skeleton on the strength of the test block was analyzed.

View Article and Find Full Text PDF

This paper theoretically explores the propagation attenuation of normally incident P-waves on a single uncoupled joint exhibiting nonlinear deformation behavior. The stress-deformation model of the single uncoupled joint (g-λ model with λ ≥ 1) is employed to depict the nonlinearity of uncoupled joints, with a greater value of the parameter λ signifying a lower degree of non-linearity in the joint model curve. By making use of the characteristic line approach in conjunction with the discontinuous displacement model, we have obtained the finite difference expressions which precisely represent the particle velocity and energy transmission coefficient of the transmitted wave.

View Article and Find Full Text PDF

In order to master the strength and deformation characteristics, including the macro-micro failure mechanism of soft rock samples with penetrating joints under triaxial loading, a series of numerical triaxial tests have been carried out. The strength and deformation characteristics, failure modes, crack propagation, distribution of force chains, and the influences of joint dip angles and confining pressures have been analyzed and compared with the laboratory test results. The results show that (1) the residual strength ratio of jointed rock samples generally increases first and then decreases with the increase in joint dip angles under the same confining pressure and reaches the maximum value around 23-24°.

View Article and Find Full Text PDF

Slurry retention in fractures decreases after grouting is completed and the pressure supply is stopped, which affects the grouting sealing effect and prevents or restrains the occurrence of such adverse conditions. Based on the time-varying yield stress of grout, a theoretical analysis model of grouting diffusion decay is established, the decay height variation function and the minimum pressure stabilisation time calculation formula are derived, and the sealing mechanism of a jointed rock mass with multiple joints is studied. Moreover, a 3D visualisation laboratory test device for grouting diffusion decay of a jointed rock mass with layers was developed to analyse the diffusion and decay process of grout with different water-cement (W/C) ratios visually, and the correctness of the theoretical model was verified.

View Article and Find Full Text PDF

Deep foundation pit excavation is an important way to develop underground space in congested urban areas. Rock bridges prevent the interconnection of joints and control the deformation and failure of the rock mass caused by excavation for foundation pits. However, few studies have considered the acoustic properties and strain field evolution of rock bridges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!