: prosthetic loosening after hip and knee arthroplasty is one of the most common causes of joint arthroplasty failure and revision surgery. Diagnosis of prosthetic loosening is a difficult problem and, in many cases, loosening is not clearly diagnosed until accurately confirmed during surgery. The purpose of this study is to conduct a systematic review and meta-analysis to demonstrate the analysis and performance of machine learning in diagnosing prosthetic loosening after total hip arthroplasty (THA) and total knee arthroplasty (TKA). : three comprehensive databases, including MEDLINE, EMBASE, and the Cochrane Library, were searched for studies that evaluated the detection accuracy of loosening around arthroplasty implants using machine learning. Data extraction, risk of bias assessment, and meta-analysis were performed. : five studies were included in the meta-analysis. All studies were retrospective studies. In total, data from 2013 patients with 3236 images were assessed; these data involved 2442 cases (75.5%) with THAs and 794 cases (24.5%) with TKAs. The most common and best-performing machine learning algorithm was DenseNet. In one study, a novel stacking approach using a random forest showed similar performance to DenseNet. The pooled sensitivity across studies was 0.92 (95% CI 0.84-0.97), the pooled specificity was 0.95 (95% CI 0.93-0.96), and the pooled diagnostic odds ratio was 194.09 (95% CI 61.60-611.57). The I2 statistics for sensitivity and specificity were 96% and 62%, respectively, showing that there was significant heterogeneity. The summary receiver operating characteristics curve indicated the sensitivity and specificity, as did the prediction regions, with an AUC of 0.9853. : the performance of machine learning using plain radiography showed promising results with good accuracy, sensitivity, and specificity in the detection of loosening around THAs and TKAs. Machine learning can be incorporated into prosthetic loosening screening programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141023 | PMC |
http://dx.doi.org/10.3390/medicina59040782 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFArch Pathol Lab Med
January 2025
the Department of Pathology, The Ohio State University, Columbus (Parwani).
Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.
Objective.
Anal Sci
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138, Nicosia, Turkey.
In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.
Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Thyroid Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.
Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!